Patents by Inventor Robert Aigner

Robert Aigner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10090820
    Abstract: Stealth-dicing-compatible devices and methods to prevent acoustic backside reflections on acoustic wave devices are disclosed. An acoustic wave device comprises a substrate having opposing top and bottom surfaces, where a first portion of the bottom surface has a higher roughness than a second portion of the bottom surface, and an acoustic resonator over the top surface of the substrate. The acoustic resonator comprises a piezoelectric layer having opposing top and bottom surfaces and a plurality of electrodes, at least some of which are disposed on the top surface of the piezoelectric layer. The first portion of the bottom surface of the substrate is below and opposite from the acoustic resonator, and the second portion of the bottom surface of the substrate is not located below and opposite from the acoustic resonator. Multiple first portions, each separated from the other by second portions, may exist.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 2, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Robert Aigner, Ebrahim Andideh
  • Patent number: 10068831
    Abstract: The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the module substrate, a mold compound component, a thermally conductive film, and a thermally enhanced mold compound component. The mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally conductive film resides over at least the upper surface of the thinned flip chip at the bottom of the cavity. The thermally enhanced mold compound component resides over at least a portion of the thermally conductive film to fill the cavity.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: September 4, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Robert Aigner
  • Publication number: 20180219530
    Abstract: Various arrangements for electrically coupling the electrodes of coupled resonator structures (CRSes) to form unique two- and three-terminal devices as well as the use of such CRSes in filter networks are disclosed.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 2, 2018
    Inventors: Nadim Khlat, Robert Aigner
  • Patent number: 10009052
    Abstract: RF filtering circuitry includes a first transmit signal node, a second transmit signal node, a common node, first transmit signal filtering circuitry, second transmit signal filtering circuitry, and transmit signal cancellation circuitry. The first transmit signal filtering circuitry is coupled between the first transmit signal node and the common node and is configured to pass RF transmit signals within a first transmit signal frequency band while attenuating signals outside the first transmit signal frequency band. The second transmit signal filtering circuitry is coupled between the second transmit signal node and the common node and is configured to pass RF transmit signals within a second transmit signal frequency band while attenuating signals outside the second transmit signal frequency band. The transmit signal cancellation circuitry is coupled between the common node and the second transmit signal node and is configured to generate a transmit cancellation signal.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 26, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Gernot Fattinger, Marcus Granger-Jones, Robert Aigner
  • Publication number: 20180166358
    Abstract: The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the module substrate, a mold compound component, a thermally conductive film, and a thermally enhanced mold compound component. The mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally conductive film resides over at least the upper surface of the thinned flip chip at the bottom of the cavity. The thermally enhanced mold compound component resides over at least a portion of the thermally conductive film to fill the cavity.
    Type: Application
    Filed: April 19, 2017
    Publication date: June 14, 2018
    Inventors: Julio C. Costa, Robert Aigner
  • Patent number: 9979377
    Abstract: Embodiments may provide, among other things, a frequency filter including one or more series resonators and one or more shunt resonators. The series resonators may have a first periodicity and the shunt resonators may have a second periodicity. The frequency filter may include a control circuit that may be configured to cause a change in frequency of the one or more series resonators or the one or more shunt resonators of less than the first or second periodicity, respectively, and the change in frequency may result in a change to a passband associated with the frequency filter of at least the first or second periodicity. Additional embodiments may be described and/or claimed herein.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 22, 2018
    Assignee: Qorvo US, Inc.
    Inventor: Robert Aigner
  • Patent number: 9966927
    Abstract: RF filtering circuitry includes a common node, a first input/output node, a second/input output node, a first filter coupled between the common node, the first input/output node, and the second input/output node, and a second filter coupled between the common node, the first input/output node, and the second input/output node. The first filter is configured to provide a first bandpass filter response between the common node and the first input/output node, where the first bandpass filter response is configured to pass RF signals within a first subset of the first frequency band while attenuating other signals. Further, the first filter is configured to provide a bandstop filter response between the common node and the second input/output node, where the bandstop filter response is configured to attenuate RF signals within the first subset of the first frequency band while passing other signals.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 8, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Marcus Granger-Jones, Robert Aigner
  • Publication number: 20180097507
    Abstract: Embodiments of an acoustic wave filter system that includes at least one acoustic wave filter and acoustic wave tuning control circuitry are disclosed. The acoustic wave filter includes at least one acoustic wave resonator and defines a passband. To provide tuning for calibration or for dynamic filter operation, the acoustic wave tuning control circuitry is configured to bias one or more of the acoustic wave resonators with bias voltages. Biasing an acoustic wave resonator affects the resonances of the resonator, thereby allowing for the passband of the acoustic wave resonator to be tuned. Accordingly, the acoustic wave tuning control circuitry is configured to adjust the bias voltages so that the acoustic wave filter shifts the passband. In this manner, the passband of the acoustic wave filter can be tuned with high degree of accuracy and without requiring physical alterations to the acoustic wave resonators.
    Type: Application
    Filed: October 31, 2016
    Publication date: April 5, 2018
    Inventors: Baker Scott, Robert Aigner, Gernot Fattinger, George Maxim, Dirk Robert Walter Leipold, Nadim Khlat
  • Publication number: 20180076794
    Abstract: A filter circuit includes a first input node and a second input node for receiving an input signal, and a first output node and a second output node for providing an output signal. A first series acoustic resonator is coupled in series between the first input node and the first output node. At least one coupled resonator filter (CRF) includes first and second transducers, which may be acoustically coupled to one another. The first transducer has a first electrode coupled to the first input node, a second electrode coupled to the second input node, and a first piezoelectric layer between the first electrode and the second electrode. A second transducer has a third electrode coupled to the first output node, a fourth electrode coupled to the second output node, and a second piezoelectric layer between the third electrode and the fourth electrode.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Nadim Khlat, Robert Aigner
  • Patent number: 9847769
    Abstract: Tunable filter circuitry includes a series acoustic resonator between first and second nodes and a compensation circuit in parallel with the series acoustic resonator. The compensation circuit includes first and second inductors coupled in series between the first node and the second node, wherein the first inductor and the second inductor are negatively coupled with one another and a common node is provided between the first and second inductors. The compensation circuit also includes first and second shunt acoustic resonators, which are coupled in parallel with one another between the common node and a fixed voltage node. A first variable capacitor is also coupled between the common node and the fixed voltage node, wherein changing a capacitance of the first variable capacitor changes a bandwidth of a passband of the filter circuitry.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 19, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Robert Aigner
  • Patent number: 9837984
    Abstract: An RF ladder filter having a parallel capacitance compensation circuit is disclosed. The parallel capacitance compensation circuit is made up of a first inductive element with a first T-terminal and a first end coupled to a first ladder terminal and a second inductive element with a second T-terminal that is coupled to the first T-terminal of the first inductive element and a second end coupled to a second ladder terminal. Further included is a compensating acoustic RF resonator (ARFR) having a fixed node terminal and a third T-terminal that is coupled to the first T-terminal of the first inductive element and the second T-terminal of the second inductive element, and a finite number of series-coupled ladder ARFRs, wherein the parallel capacitance compensation circuit is coupled across one of the finite number of series-coupled ARFRs by way of the first ladder terminal and the second ladder terminal.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: December 5, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Andrew F. Folkmann, Robert Aigner, Marcus Granger-Jones
  • Publication number: 20170301992
    Abstract: Filter circuitry is used in communication systems that employ multiple antennas. In general, a communication system may have a transmit path and a receive path. The transmit path extends to a first antenna port and is configured to present signals for transmission in a first communication band and a second communication band to the first antenna port for transmission via a first antenna that is coupled to the first antenna port. The receive path extends to a second antenna port and comprises a first multiple passband/multiple stopband filter that provides a plurality of passbands and a plurality of stopbands interleaved with one another, wherein a first stopband and a second stopband of the plurality of stopbands correspond respectively to the first communication band and the second communication band and are separated by a first passband of the plurality of passbands.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 19, 2017
    Inventors: Nadim Khlat, Robert Aigner
  • Publication number: 20170263844
    Abstract: Bulk Acoustic Wave (BAW) resonators with a Border (BO) ring and an inner ring are provided. One BAW resonator includes a bottom electrode, a piezoelectric layer over the bottom electrode, and a top electrode over the piezoelectric layer in which an active region is formed where the top electrode and the bottom electrode overlap. The top electrode includes a BO ring extending about a periphery of the active region and an inner ring inside of and spaced apart from the BO ring. The BO ring is a mass loading of a first portion of the top electrode and the inner ring is a mass unloading of a second portion of the top electrode. Various methods include fabricating a BAW resonator with a top electrode including a mass loading BO ring and a mass unloading inner ring spaced apart from the mass loading BO ring.
    Type: Application
    Filed: September 29, 2016
    Publication date: September 14, 2017
    Inventors: Alireza Tajic, Paul Stokes, Robert Aigner
  • Publication number: 20170222672
    Abstract: RF filtering circuitry includes a first transmit signal node, a second transmit signal node, a common node, first transmit signal filtering circuitry, second transmit signal filtering circuitry, and transmit signal cancellation circuitry. The first transmit signal filtering circuitry is coupled between the first transmit signal node and the common node and is configured to pass RF transmit signals within a first transmit signal frequency band while attenuating signals outside the first transmit signal frequency band. The second transmit signal filtering circuitry is coupled between the second transmit signal node and the common node and is configured to pass RF transmit signals within a second transmit signal frequency band while attenuating signals outside the second transmit signal frequency band. The transmit signal cancellation circuitry is coupled between the common node and the second transmit signal node and is configured to generate a transmit cancellation signal.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 3, 2017
    Inventors: Nadim Khlat, Gernot Fattinger, Marcus Granger-Jones, Robert Aigner
  • Patent number: 9698756
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR), a first compensating ARFR, and a second compensating ARFR, is disclosed. The first compensating ARFR is coupled between a first inductive element and a first end of the first ARFR. The second compensating ARFR is coupled between a second inductive element and a second end of the first ARFR. The first inductive element and the second inductive element are negatively coupled to one another. The first compensating ARFR, the second compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: July 4, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Publication number: 20170093369
    Abstract: In one embodiment, filter circuitry includes a series acoustic resonator between first and second nodes. A main series resonance is provided between the first node and the second node at a main resonance frequency through the series acoustic resonator. A compensation circuit includes first and second inductors coupled in series between the first node and the second node, wherein the first inductor and the second inductor are negatively coupled with one another and a common node is provided between the first and second inductors. The compensation circuit also includes first and second shunt acoustic resonators, which are coupled in parallel with one another between the common node and a fixed voltage node. First and second series resonances at first and second resonance frequencies are provided between the first node and the second node through compensation circuit wherein the first and second resonance frequencies are different.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 30, 2017
    Inventors: Nadim Khlat, Robert Aigner
  • Publication number: 20170093370
    Abstract: Tunable filter circuitry includes a series acoustic resonator between first and second nodes and a compensation circuit in parallel with the series acoustic resonator. The compensation circuit includes first and second inductors coupled in series between the first node and the second node, wherein the first inductor and the second inductor are negatively coupled with one another and a common node is provided between the first and second inductors. The compensation circuit also includes first and second shunt acoustic resonators, which are coupled in parallel with one another between the common node and a fixed voltage node. A first variable capacitor is also coupled between the common node and the fixed voltage node, wherein changing a capacitance of the first variable capacitor changes a bandwidth of a passband of the filter circuitry.
    Type: Application
    Filed: November 9, 2016
    Publication date: March 30, 2017
    Inventors: Nadim Khlat, Robert Aigner
  • Patent number: 9602076
    Abstract: Embodiments provide a solidly-mounted bulk acoustic wave (BAW) resonator and method of making same. In embodiments, the BAW resonator may include a first resonator and a second resonator that are coupled with one another via a top electrode layer. A capacitive element may be included in the BAW resonator in parallel with the first resonator. Other embodiments may be described and claimed.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: March 21, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Susanne Kreuzer, Alexandre Volatier, Robert Aigner
  • Publication number: 20170033756
    Abstract: A method of fabricating a bonded wafer with low carrier lifetime in silicon comprises providing a silicon substrate having opposing top and bottom surfaces, modifying a top portion of the silicon substrate to reduce carrier lifetime in the top portion relative to the carrier lifetime in portions of the silicon substrate other than the top portion, bonding a piezoelectric layer having opposing top and bottom surfaces separated by a distance T over the top surface of the silicon substrate, and providing a pair of electrodes having fingers that are inter-digitally dispersed on a top surface of the piezoelectric layer, the electrodes comprising a portion of a Surface Acoustic Wave (SAW) device. The modifying and bonding steps may be performed in any order. The modified top portion of the silicon substrate prevents the creation of a parasitic conductance within that portion during operation of the SAW device.
    Type: Application
    Filed: March 31, 2016
    Publication date: February 2, 2017
    Inventors: Shogo Inoue, Marc Solal, Robert Aigner
  • Patent number: D785125
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: April 25, 2017
    Inventor: Robert Aigner