Patents by Inventor Robert D. Wieting

Robert D. Wieting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110259395
    Abstract: A high efficiency thin-film photovoltaic module is formed on a substrate. The photovoltaic module includes a plurality of stripe shaped photovoltaic cells electrically coupled to each other and physically disposed in parallel to the length one next to another across the width. Each cell includes a barrier material overlying the surface and a first electrode overlying the barrier material. Each cell further includes an absorber formed overlying the first electrode. The absorber includes a copper gallium indium diselenide compound material characterized by an energy band-gap of about 1 eV to 1.1 eV. Each cell additionally includes a buffer material overlying the absorber and a bi-layer zinc oxide material comprising a high resistivity transparent layer overlying the buffer material and a low resistivity transparent layer overlying the high resistivity transparent layer.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 27, 2011
    Applicant: Stion Corporation
    Inventors: Robert D. Wieting, Rajiv Pethe, Kannan Ramanathan, May Shao, Ashish Tandon
  • Publication number: 20110263064
    Abstract: A method for fabricating a thin film photovoltaic device. The method includes providing a substrate comprising an absorber layer and an overlying window layer. The substrate is loaded into a chamber and subjected to a vacuum environment. The vacuum environment is at a pressure ranging from 0.1 Torr to about 0.02 Torr. In a specific embodiment, a mixture of reactant species derived from diethylzinc species, water species and a carrier gas is introduced into the chamber. The method further introduces a diborane species using a selected flow rate into the mixture of reactant species. A zinc oxide film is formed overlying the window layer to define a transparent conductive oxide using the selected flow rate to provide a resistivity of about 2.
    Type: Application
    Filed: October 9, 2009
    Publication date: October 27, 2011
    Applicant: STION CORPORATION
    Inventor: ROBERT D. WIETING
  • Publication number: 20110229989
    Abstract: A method for fabricating a copper indium diselenide semiconductor film is provided using substrates having a copper and indium composite structure. The substrates are placed vertically in a furnace and a gas including a selenide species and a carrier gas are introduced. The temperature is increased from about 350° C. to about 450° C. to initiate formation of a copper indium diselenide film from the copper and indium composite on the substrates.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 22, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110230006
    Abstract: An apparatus for fabricating thin films on substrate panels includes a deposition chamber enclosed by sidewalls, a lid, and a base. The apparatus includes a mixing chamber disposed above the lid and configured to receive vapor species and form a mixed vapor. The mixing chamber is coupled with the deposition chamber via inlets through the lid, including a diffuser plate. Two heater plates disposed side by side on the base supporting and heating two substrates.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: Stion Corporation
    Inventors: Robert D. Wieting, Kenneth B. Doering, Jurg Schmitzburger
  • Publication number: 20110223745
    Abstract: According to an embodiment, the present invention provide a method for fabricating a copper indium diselenide semiconductor film using a self cleaning furnace. The method includes transferring a plurality of substrates into a furnace, the furnace comprising a processing region and at least one end cap region disengageably coupled to the processing region, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5, each of the substrates having a copper and indium composite structure.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 15, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110212565
    Abstract: A method for processing a thin film photovoltaic module. The method includes providing a plurality of substrates, each of the substrates having a first electrode layer and an overlying absorber layer composed of copper indium gallium selenide (CIGS)or copper indium selenide (CIS) material. The absorber material comprises a plurality of sodium bearing species. The method maintains the plurality of substrates in a controlled environment after formation of at least the absorber layer through one or more processes up to a lamination process. The controlled environment has a relative humidity of less than 10% and a temperature ranging from about 10 degrees Celsius to about 40 degrees Celsius. The method subjects the plurality of substrates to a liquid comprising water at a temperature from about 10 degrees Celsius to about 80 degrees Celsius to process the plurality of substrates after formation of the absorber layer.
    Type: Application
    Filed: May 12, 2011
    Publication date: September 1, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8008198
    Abstract: A method for fabricating a copper indium diselenide semiconductor film is provided using substrates having a copper and indium composite structure. The substrates are placed vertically in a furnace and a gas including a selenide species and a carrier gas are introduced. The temperature is increased from about 350° C. to about 450° C. to initiate formation of a copper indium diselenide film from the copper and indium composite on the substrates.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 30, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110203634
    Abstract: A method for integrating photovoltaic module includes providing a cover plate having a first surface and a second surface opposed to the first surface and supplying photovoltaic devices respectively formed on substrates. The photovoltaic devices include photovoltaic cells electrically coupled to each other, and each cell is characterized by a thin-film photovoltaic layer sandwiched between a first electrode material and a second electrode material. The first electrode material overlies the substrate and the second electrode material overlies the thin-film photovoltaic layer. The method further includes disposing the solar devices side by side to laminate with the cover plate by means of a first organic material filled between the second electrode material and the second surface. Each of the solar devices has a peripheral edge region being sealed by a second organic material. The method further includes electrically coupling the solar devices to each other.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 25, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7993955
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 9, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7993954
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 9, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7964434
    Abstract: A method of processing a plurality of photovoltaic materials in a batch process includes providing at least one transparent substrate having an overlying first electrode layer and an overlying copper species based absorber precursor layer within an internal region of a furnace. The overlying copper species based absorber precursor layer has an exposed face. The method further includes disposing at least one soda lime glass comprising a soda lime glass face within the internal region of the furnace such that the soda lime glass face is adjacent by a spacing to the exposed face of the at least one transparent substrate. Furthermore, the method includes subjecting the at least one transparent substrate and the one soda lime glass to thermal energy to transfer one or more sodium bearing species from the soda lime glass face across the spacing into the copper species based absorber precursor layer via the exposed face.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 21, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7955891
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 7, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7947524
    Abstract: A method for processing a thin film photovoltaic module. The method includes providing a plurality of substrates, each of the substrates having a first electrode layer and an overlying absorber layer composed of copper indium gallium selenide (CIGS) or copper indium selenide (CIS) material. The absorber material comprises a plurality of sodium bearing species. The method maintains the plurality of substrates in a controlled environment after formation of at least the absorber layer through one or more processes up to a lamination process. The controlled environment has a relative humidity of less than 10% and a temperature ranging from about 10 Degrees Celsius to about 40 Degrees Celsius. The method subjects the plurality of substrates to a liquid comprising water at a temperature from about 10 Degrees Celsius to about 80 Degrees Celsius to process the plurality of substrates after formation of the absorber layer.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 24, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110073181
    Abstract: A method for forming a thin film photovoltaic device having patterned electrode films includes providing a soda lime glass substrate with an overlying lower electrode layer comprising a molybdenum material. The method further includes subjecting the lower electrode layer with one or more pulses of electromagnetic radiation from a laser source to ablate one or more patterns associated with one or more berm structures from the lower electrode layer. Furthermore, the method includes processing the lower electrode layer comprising the one or more patterns using a mechanical brush device to remove the one or more berm structures followed by treating the lower electrode layer comprising the one or more patterns free from the one or more berm structures. The method further includes forming a layer of photovoltaic material overlying the lower electrode layer and forming a first zinc oxide layer overlying the layer of photovoltaic material.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070687
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070684
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070690
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070682
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070686
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070688
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting