Patents by Inventor Robert D. Wieting

Robert D. Wieting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110070685
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070689
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110070683
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7910399
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 22, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110018103
    Abstract: According to an embodiment, the present invention provide method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure, each of the substrate including a peripheral region, the peripheral region including a plurality of openings, the plurality of openings including at least a first opening and a second opening. The also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5, the furnace including a holding apparatus, the holding apparatus including a first elongated member being configured to hang each of the substrates using at least the first opening.
    Type: Application
    Filed: September 28, 2009
    Publication date: January 27, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110020959
    Abstract: A method for processing a thin film photovoltaic module. The method includes providing a plurality of substrates, each of the substrates having a first electrode layer and an overlying absorber layer composed of copper indium gallium selenide (CIGS) or copper indium selenide (CIS) material. The absorber material comprises a plurality of sodium bearing species. The method maintains the plurality of substrates in a controlled environment after formation of at least the absorber layer through one or more processes up to a lamination process. The controlled environment has a relative humidity of less than 10% and a temperature ranging from about 10 Degrees Celsius to about 40 Degrees Celsius. The method subjects the plurality of substrates to a liquid comprising water at a temperature from about 10 Degrees Celsius to about 80 Degrees Celsius to process the plurality of substrates after formation of the absorber layer.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 27, 2011
    Applicant: STION CORPORATION
    Inventor: ROBERT D. WIETING
  • Publication number: 20110020980
    Abstract: A method for fabricating a thin film solar cell includes providing a soda lime glass substrate comprising a surface region, treating the surface region with one or more cleaning process including an aqueous solution to remove one or more contaminants and/or particulates, and forming a lower electrode layer overlying the surface region. The method also includes performing a thermal treatment process to remove any residual water species to substantially less than a monolayer of water species from the lower electrode layer and soda lime glass substrate. The thermal treatment process changes a temperature of the soda lime glass substrate from a first temperature to a second temperature to pre-heat the soda lime glass substrate. Additionally, the method includes transferring the soda lime glass substrate, which has been preheated, to a deposition chamber and forming a layer of photovoltaic material overlying the lower electrode layer within the deposition chamber.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 27, 2011
    Applicant: STION CORPORATION
    Inventor: ROBERT D. WIETING
  • Publication number: 20110020978
    Abstract: A method of processing a plurality of photovoltaic materials in a batch process includes providing at least one transparent substrate having an overlying first electrode layer and an overlying copper species based absorber precursor layer within an internal region of a furnace. The overlying copper species based absorber precursor layer has an exposed face. The method further includes disposing at least one soda lime glass comprising a soda lime glass face within the internal region of the furnace such that the soda lime glass face is adjacent by a spacing to the exposed face of the at least one transparent substrate. Furthermore, the method includes subjecting the at least one transparent substrate and the one soda lime glass to thermal energy to transfer one or more sodium bearing species from the soda lime glass face across the spacing into the copper species based absorber precursor layer via the exposed face.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 27, 2011
    Applicant: STION CORPORATION
    Inventor: ROBERT D. WIETING
  • Publication number: 20110020977
    Abstract: A method for forming one or more patterns for a thin film photovoltaic material. The method includes providing a substrate including a molybdenum layer and an overlying absorber comprising a copper bearing species and a window layer comprising a cadmium bearing species. The substrate is supported to expose a surface of the window layer. In a specific embodiment, the method includes using a scribe device. The scribe device includes a scribe having a tip. The scribe device is configured to pivot about one or more regions and configured to apply pressure to the tip, such that the tip is placed on a selected region of the window layer or the absorber layer. The method moves the scribe device relative to the substrate in a direction to form a pattern on at least the window layer or the absorber layer at a determined speed maintaining the molybdenum layer free from the pattern.
    Type: Application
    Filed: October 9, 2009
    Publication date: January 27, 2011
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7863074
    Abstract: A method for forming a thin film photovoltaic device having patterned electrode films includes providing a soda lime glass substrate with an overlying lower electrode layer comprising a molybdenum material. The method further includes subjecting the lower electrode layer with one or more pulses of electromagnetic radiation from a laser source to ablate one or more patterns associated with one or more berm structures from the lower electrode layer. Furthermore, the method includes processing the lower electrode layer comprising the one or more patterns using a mechanical brush device to remove the one or more berm structures followed by treating the lower electrode layer comprising the one or more patterns free from the one or more berm structures. The method further includes forming a layer of photovoltaic material overlying the lower electrode layer and forming a first zinc oxide layer overlying the layer of photovoltaic material.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 4, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20100258179
    Abstract: A method for fabricating a thin film solar cell includes providing a soda lime glass substrate comprising a surface region and a concentration of sodium oxide of greater than about 10 wt % and treating the surface region with one or more cleaning process, using a deionized water rinse, to remove surface contaminants having a particles size of greater than three microns. The method also includes forming a barrier layer overlying the surface region, forming a first molybdenum layer in tensile configuration overlying the barrier layer, and forming a second molybdenum layer in compressive configuration using a second process overlying the first molybdenum layer. Additionally, the method includes patterning the first molybdenum layer and the second molybdenum layer to form a lower electrode layer and forming a layer of photovoltaic material overlying the lower electrode layer. Moreover, the method includes forming a first zinc oxide layer overlying the layer of photovoltaic materials.
    Type: Application
    Filed: September 25, 2009
    Publication date: October 14, 2010
    Applicant: STION CORPORATION
    Inventor: Robert D. Wieting
  • Publication number: 20100261307
    Abstract: A method for forming a thin film photovoltaic device having patterned electrode films includes providing a soda lime glass substrate with an overlying lower electrode layer comprising a molybdenum material. The method further includes subjecting the lower electrode layer with one or more pulses of electromagnetic radiation from a laser source to ablate one or more patterns associated with one or more berm structures from the lower electrode layer. Furthermore, the method includes processing the lower electrode layer comprising the one or more patterns using a mechanical brush device to remove the one or more berm structures followed by treating the lower electrode layer comprising the one or more patterns free from the one or more berm structures. The method further includes forming a layer of photovoltaic material overlying the lower electrode layer and forming a first zinc oxide layer overlying the layer of photovoltaic material.
    Type: Application
    Filed: September 23, 2009
    Publication date: October 14, 2010
    Applicant: STION CORPORATION
    Inventor: ROBERT D. WIETING
  • Publication number: 20100087027
    Abstract: A method for forming a thin film photovoltaic material. The method includes providing a plurality of substrates. Each of the substrates has a surface region, an overlying first electrode material, an absorber material including at least a copper species, an indium species, and a selenium species. The method immerses the plurality of substrates in an aqueous solution including an ammonia species, a cadmium species, and a organosulfur (for example, thiourea) species in a bath to form a cadmium sulfide window material having a thickness of less than about 200 Angstroms overlying the absorber material. The aqueous solution is maintained at a temperature ranging from about 50 to about 60 Degrees Celsius. The plurality of substrates having at least the absorber material and the window layer are removed from the aqueous solution. The aqueous solution is further subjected to a filter process to substantially remove one or more particles greater than about 5 microns.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 8, 2010
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20090090412
    Abstract: A photovoltaic device comprising a photovoltaic layer between a substrate and a cover plate, which cover plate is transparent in an area above the photovoltaic layer, wherein the cover plate overlaps the photovoltaic layer, and wherein the cover, in an area adjacent to the photovoltaic layer, is opaque; a method of encapsulating a photovoltaic device with such a cover plate, and the use of such a cover plate for encapsulating a photovoltaic device, for protecting polymeric sealant material present adjacent the photovoltaic layer from light induced degradation and/or for protecting the encapsulated photovoltaic device from thermal stress during due to light irradiation.
    Type: Application
    Filed: December 20, 2006
    Publication date: April 9, 2009
    Inventors: Hermann Calwer, Volker Probst, Robert D. Wieting
  • Patent number: 5078803
    Abstract: Transparent conductors for use in a variety of different photovoltaic devices are disclosed, comprising at least one ZnO transparent conductor layer having a predetermined level of haziness achieved, e.g., through appropriate variation in the parameters employed in formation of the transparent conductor (for example, by chemical vapor deposition) and/or through treatment of the transparent conductor subsequent to its formation. The concentration and/or relative rate of introduction of dopant during the deposition of the transparent conductor may be adjusted to prepare films having the desired morphology and/or structure. Alternatively, the morphology, composition and/or structure of the transparent conductor may be modified by suitable post-formation treatments. A combination of at least two transparent layers may also be employed, comprising at least a first layer designed primarily to maximize the optical properties and at least a second layer designed to maximize the electrical properties.
    Type: Grant
    Filed: September 22, 1989
    Date of Patent: January 7, 1992
    Assignee: Siemens Solar Industries L.P.
    Inventors: David N. Pier, Charles F. Gay, Robert D. Wieting, Heidi J. Langeberg
  • Patent number: 4751149
    Abstract: Zinc oxide is applied to a substrate at a low temperature by using a mixture of an organozinc compound and water carried in an inert gas. The resulting zinc oxide film has a relatively low resistivity which can be varied by addition of a group III element.
    Type: Grant
    Filed: March 12, 1987
    Date of Patent: June 14, 1988
    Assignee: Atlantic Richfield Company
    Inventors: Pantham S. Vijayakumar, Kimberly A. Blaker, Robert D. Wieting, Boon Wong, Arvind T. Halani
  • Patent number: 4612411
    Abstract: A thin film photovoltaic device comprising a first layer of copper indium diselenide p-type semiconductor and a second layer of n-type zinc oxide semiconductor. In a preferred form, the first portion of the zinc oxide film at the junction with the CIS is undoped to have relatively high resistivity, while the remaining portion thereof is doped to achieve low resistivity. The zinc oxide is preferably deposited by a low temperature chemical vapor deposition process.
    Type: Grant
    Filed: June 4, 1985
    Date of Patent: September 16, 1986
    Assignee: Atlantic Richfield Company
    Inventors: Robert D. Wieting, Richard R. Potter
  • Patent number: 4581625
    Abstract: A solid state color imaging device comprising a two dimensional array of stacked thin film photovoltaic devices with devices in each stack responsive to selected color bands. Color discrimination may be enhanced by design of intermediate transparent conductive layers to act as optical filters.
    Type: Grant
    Filed: December 19, 1983
    Date of Patent: April 8, 1986
    Assignee: Atlantic Richfield Company
    Inventors: Charles F. Gay, Robert D. Wieting
  • Patent number: D625695
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: October 19, 2010
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting