Patents by Inventor Robert Dawson

Robert Dawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5904539
    Abstract: An isolation technique is provided for improving the overall planarity of filled isolation regions relative to adjacent silicon mesas. The isolation process results in a silicon mesa having enhanced mechanical and electrical properties. Planarity is performed by repeating the steps of filling isolation trenches, patterning large area isolation trenches, and refilling isolation trenches to present an upper surface having indents which can be readily removed by a chemical-mechanical polish. The silicon mesa upper surface is enhanced by utilizing a unique set of layers stacked upon the silicon substrate, and thereafter patterning the substrate to form raised silicon surfaces, or mesas, having the stacked layers thereon. The patterned, stacked layers include a unique combination of dissimilar compositions which, when removed, leave a silicon mesa upper surface which is recessed below the adjacent, filled trenches.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: May 18, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Robert Dawson, Charles E. May, Mark I. Gardner, Kuang-Yeh Chang
  • Patent number: 5899732
    Abstract: A region of damaged silicon is exploited as a gettering region for gettering impurities in a silicon substrate. The region of damaged silicon is formed between source and drain regions of a device by implanting silicon atoms into the silicon substrate after the formation of a gate electrode of the device. The damaged region is subsequently annealed and, during the annealing process, dopant atoms such as boron segregate to the region, locally increasing the dopant concentration in the region. The previously damaged region is in a location that determine the punchthrough characteristics of the device. The silicon implant for creating a gettering effect is performed after gate formation so that the region immediately beneath the junction is maintained at a lower dopant concentration to reduce junction capacitance.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: May 4, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Derick J. Wristers, Robert Dawson, H. Jim Fulford, Jr., Frederick N. Hause, Mark W. Michael, Bradley T. Moore
  • Patent number: 5899727
    Abstract: An isolation technique is provided for improving the overall planarity of isolation regions relative to adjacent active area silicon mesas. The isolation process results in a trench formed in field regions immediately adjacent the active regions. The trench, however, does not extend entirely across the field region. By preventing large area trenches, substantial dielectric fill material and the problems of subsequent planarization of that fill material is avoided. Accordingly, the present isolation technique does not require conventional fill dielectric normally associated with a shallow trench process. While it achieves the advantages of forming silicon mesas, the present process avoids having to rework dielectric surfaces in large area field regions using conventional sacrificial etchback, block masking and chemical-mechanical polishing. The improved isolation technique hereof utilizes trenches of minimal width etched into the silicon substrate at the periphery of field regions, leaving a field mesa.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: May 4, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Mark W. Michael, William S. Brennan
  • Patent number: 5894168
    Abstract: A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: April 13, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., William S. Brennan
  • Patent number: 5888675
    Abstract: A reticle provides an image pattern and compensates for a lens error in a photolithographic system. The reticle is structurally modified using image displacement data indicative of the lens error. The reticle can be structurally modified by adjusting the configuration (or layout) of radiation-transmitting regions, for instance by adjusting a chrome pattern on the top surface of a quartz base. Alternatively, the reticle can be structurally modified by adjusting the curvature of the reticle, for instance by providing a chrome pattern on the top surface of a quartz base and grinding away portions of the bottom surface of the quartz base. The image displacement data may also vary as a function of lens heating so that the reticle compensates for lens heating associated with the reticle pattern.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: March 30, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bradley T. Moore, Robert Dawson, H. Jim Fulford, Jr., Mark I. Gardner, Frederick N. Hause, Mark W. Michael, Derick J. Wristers
  • Patent number: 5885887
    Abstract: A method of making an IGFET with a selectively doped multilevel polysilicon gate that includes upper and lower polysilicon gate levels is disclosed.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: March 23, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Robert Dawson, H. Jim Fulford Jr., Mark I. Gardner, Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 5885877
    Abstract: A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: March 23, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Robert Dawson, H. Jim Fulford, Jr., Frederick N. Hause, Daniel Kadosh, Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 5877058
    Abstract: An IGFET with metal spacers is disclosed. The IGFET includes a gate electrode on a gate insulator on a semiconductor substrate. Sidewall insulators are adjacent to opposing vertical edges of the gate electrode, and metal spacers are formed on the substrate and adjacent to the sidewall insulators. The metal spacers are electrically isolated from the gate electrode but contact portions of the drain and the source. Preferably, the metal spacers are adjacent to edges of the gate insulator beneath the sidewall insulators. The metal spacers are formed by depositing a metal layer over the substrate then applying an anisotropic etch. In one embodiment, the metal spacers contact lightly and heavily doped drain and source regions, thereby increasing the conductivity between the heavily doped drain and source regions and the channel underlying the gate electrode. The metal spacers can also provide low resistance drain and source contacts.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: March 2, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Robert Dawson, H. Jim Fulford, Jr., Frederick N. Hause, Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 5874346
    Abstract: In a semiconductor employing shall trench isolation, a subtrench conductive layer formed before the isolation dielectric is present by implanting dopants into the floor and sidewalls of the shallow trench using a large tilt angle (LTA) implant. The subtrench conductive layer is advantageously used to interconnect what would normally be isolated devices. In lieu of metal or polysilicon interconnects which reside over the isolation dielectric, the subtrench conductive layer is formed entirely within the silicon substrate, and resides beneath and laterally adjacent the isolation dielectric. The conductive layer is formed by implanting ions into the floor and sidewalls of a shallow trench prior to filling the trench with the isolation dielectric. The implantation at specified dosages presents a layer of dopant within the exterior surfaces of the trench sidewalls and floor. Implantation or diffusion of source/drain regions occur after the conductive layer is formed and the isolation dielectric is formed.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: February 23, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: H. Jim Fulford Jr., Robert Dawson
  • Patent number: 5866945
    Abstract: Spin-on HSQ is employed to gap fill metal layers in manufacturing a high density, multi-metal layer semiconductor device. The degradation of deposited HSQ layers during formation of borderless vias, as from photoresist stripping using an O.sub.2 -containing plasma, is overcome by treating the degraded HSQ layer with an H.sub.2 -containing plasma to restore the dangling Si--H bonds, thereby passivating the surface and preventing moisture absorption, before filling the via opening with conductive material, such as a barrier layer.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: February 2, 1999
    Assignee: Advanced Micro Devices
    Inventors: Robert C. Chen, Jeffrey A. Shields, Robert Dawson, Khanh Tran
  • Patent number: 5854131
    Abstract: An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. Accordingly, a space between conductors on one level is directly above or directly below a conductor within another level. The staggered interconnect lines are advantageously used in densely spaced regions to reduce the interlevel and intralevel capacitance. Furthermore, an interlevel and an intralevel dielectric structure includes optimally placed low K dielectrics which exist in critical spaced areas to minimize capacitive coupling and propagation delay problems. The low K dielectric, according to one embodiment, includes a capping dielectric which is used to prevent corrosion on adjacent metallic conductors, and serves as an etch stop when conductors are patterned.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: December 29, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, Mark W. Michael, Basab Bandyopadhyay, H. Jim Fulford Jr., Fred N. Hause, William S. Brennan
  • Patent number: 5854515
    Abstract: A interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Fred N. Hause, Mark W. Michael, William S. Brennan
  • Patent number: 5851891
    Abstract: An IGFET with a silicide contact on an ultra-thin gate is disclosed. A method of forming the IGFET includes forming a gate over a semiconductor substrate, forming a source and a drain in the substrate, depositing a contact material over the gate, and reacting the contact material with the gate to form a silicide contact on the gate and consume at least one-half of the gate. By consuming such a large amount of the gate, a relatively thin gate can be converted into an ultra-thin gate with a thickness on the order of 100 to 200 angstroms. Preferably, the bottom surface of the gate is essentially undoped before reacting the contact material with the gate, and reacting the contact material with the gate pushes a peak concentration of a dopant in the gate towards the substrate so that a heavy concentration of the dopant is pushed to the bottom surface of the gate without being pushed into the substrate.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: December 22, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, H. Jim Fulford, Jr., Mark I. Gardner, Frederick N. Hause, Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 5851889
    Abstract: A semiconductor fabrication process is presented which optimizes the position of impurities within a gate conductor a the source/drain straddling the gate conductor. Optimal positioned is achieved by using separate implants of different energies depending upon whether the gate conductor connotes a PMOS or NMOS transistor. A layer of polysilicon used to form the gate conductor is doped before patterning so that the source and drain regions are protected. A low energy implant is performed when implanting a fast diffuser such as boron, and a high energy implant is performed when implanting a slow diffuser like arsenic. This enables optimum positioning of the impurities throughout the gate conductor cross-section after heat cycles are applied. Fast diffusers are initially placed far from the bottom surface of the polysilicon, and diffuse near the bottom surface of the polysilicon when heat is applied.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: December 22, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson
  • Patent number: 5851913
    Abstract: A multilevel interconnect structure is provided. The multilevel interconnect structure includes two, three or more levels of conductors formed according to at least two exemplary embodiments. According to one embodiment, the contact structure which links conductors on one level to an underlying level is formed by a single via etch step followed by a fill step separate from a fill step used in filling the via. In this embodiment, the via is filled with a conductive material which forms a plug separate from the material used in forming the interconnect. In another exemplary embodiment, the step used in filling the via can be the same as that used in forming the interconnect. In either instance, a via is formed through a first dielectric to underlying conductors. A second dielectric is patterned upon the first dielectric and serves to laterally bound the fill material used in producing the overlying interconnect.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: December 22, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: William S. Brennan, Robert Dawson, H. Jim Fulford, Jr., Fred N. Hause, Basab Bandyopadhyay, Mark W. Michael
  • Patent number: 5850105
    Abstract: A method for forming a multilevel interconnect structure having a globally planarized upper surface. Dielectrics are deposited upon a semiconductor to minimize pre-existing disparities in topographical height and to create an upper surface topography having a polish rate greater than that of lower regions. Subsequent chemical mechanical polishing produces a substantially planar surface.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: December 15, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, Mark W. Michael, Basab Bandyopadhyay, H. Jim Fulford, Jr., Fred N. Hause, William S. Brennan
  • Patent number: 5846862
    Abstract: A semiconductor device and method of manufacture thereof is provided. According to one embodiment, a semiconductor device is formed by forming a trench within a substrate. An oxide layer is formed within the trench and portions of the oxide layer are removed to expose one or more portions of the substrate within the trench. A plurality of doped polysilicon pillars are formed within the trench. The doped polysilicon pillars include one or more active region pillars formed on the one or more exposed portions of the substrate.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: December 8, 1998
    Assignee: Advanced Micro Devices
    Inventors: Charles E. May, Robert Dawson
  • Patent number: 5846876
    Abstract: An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: December 8, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Fred N. Hause, Mark W. Michael, William S. Brennan
  • Patent number: 5847462
    Abstract: An interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: December 8, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, H. Jim Fulford, Jr., William S. Brennan, Fred N. Hause, Robert Dawson, Mark W. Michael
  • Patent number: 5843625
    Abstract: A semiconductor process for forming an interlevel contact. A semiconductor wafer is provided with a semiconductor substrate, a first conductive layer formed on the substrate, and a dielectric layer formed on the conductive layer. A border layer, preferably comprising polysilicon or silicon nitride is formed on the dielectric layer. Portions of the border layer are then selectively removed to expose an upper surface of a spacer region of the dielectric layer, the selective removal of the border layer resulting in a border layer having an annular sidewall extending upward from the dielectric layer and encircling the spacer region. A spacer structure is then formed on the annular sidewall. Preferably, the spacer structure is formed by chemically vapor depositing a spacer material and anisotropically etching the spacer material to just clear in the planar regions with minimum overetch.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 1, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Mark I. Gardner, Robert Dawson