Patents by Inventor Robert E. Meyer

Robert E. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124934
    Abstract: The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 18, 2024
    Inventors: James Wayne Bing, Robert F. Cressman, Manju Gupta, Salim M. Hakimi, David Hondred, Todd L. Krone, Mary E. Hartnett Locke, Abigail K. Luckring, Sandra E. Meyer, Daniel Moellenbeck, Kenneth Edwin Narva, Paul D. Olson, Craig D. Sanders, Jimei Wang, Jian Zhang, Gan-Yuan Zhong
  • Patent number: 11402017
    Abstract: A vehicle includes an engine and a transmission having an input shaft operably coupled to the engine, an output shaft operably coupled to wheels of the vehicle, a primary pump, and a secondary pump. The primary and secondary pumps are each configured to supply pressurized fluid to a valve body of the transmission. A controller is programmed to, in response to a loss of pressure of the primary pump and a speed of the output shaft exceeding a first threshold, shift the transmission to a neutral state, energize the secondary pump once the transmission is in the neutral state, and command the engine to idle speed.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 2, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Richard Reynolds Hathaway, Edward Katynski, Jerry Lee Aeschliman, Jr., David Gilewski, Stephen John Bettley, Kurt Howard Nickerson, Robert E. Meyer
  • Patent number: 10828883
    Abstract: Thermally cross-linkable photo-hydrolyzable inkjet printable polymers are used to print microfluidic channels layer-by-layer on a substrate. In one embodiment, for each layer, an inkjet head deposits droplets of a mixture of hydrophobic polymer and cross-linking agent in a pattern lying outside a two-dimensional layout of the channels, and another inkjet head deposits droplets of a mixture of poly(tetrahydropyranyl methacrylate) PTHPMA (or another hydrophobic polymer which hydrolyzes to form a hydrophilic material), cross-linking agent, and a photoacid generator (PAG) in a pattern lying inside the two-dimensional layout of the channels. After all layers are printed, flood exposure of the entire substrate to UV radiation releases acid from the PAG which hydrolyzes PTHPMA to form hydrophilic poly(methacrylic acid) PMAA, thereby rendering the PTHPMA regions hydrophilic. The layers of these now-hydrophilic patterned regions together define the microfluidic channels. The cross-linking agent (e.g.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20190210352
    Abstract: Thermally cross-linkable photo-hydrolyzable inkjet printable polymers are used to print microfluidic channels layer-by-layer on a substrate. In one embodiment, for each layer, an inkjet head deposits droplets of a mixture of hydrophobic polymer and cross-linking agent in a pattern lying outside a two-dimensional layout of the channels, and another inkjet head deposits droplets of a mixture of poly(tetrahydropyranyl methacrylate) PTHPMA (or another hydrophobic polymer which hydrolyzes to form a hydrophilic material), cross-linking agent, and a photoacid generator (PAG) in a pattern lying inside the two-dimensional layout of the channels. After all layers are printed, flood exposure of the entire substrate to UV radiation releases acid from the PAG which hydrolyzes PTHPMA to form hydrophilic poly(methacrylic acid) PMAA, thereby rendering the PTHPMA regions hydrophilic. The layers of these now-hydrophilic patterned regions together define the microfluidic channels. The cross-linking agent (e.g.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 10272663
    Abstract: Thermally cross-linkable photo-hydrolyzable inkjet printable polymers are used to print microfluidic channels layer-by-layer on a substrate. In one embodiment, for each layer, an inkjet head deposits droplets of a mixture of hydrophobic polymer and cross-linking agent in a pattern lying outside a two-dimensional layout of the channels, and another inkjet head deposits droplets of a mixture of poly(tetrahydropyranyl methacrylate) PTHPMA (or another hydrophobic polymer which hydrolyzes to form a hydrophilic material), cross-linking agent, and a photoacid generator (PAG) in a pattern lying inside the two-dimensional layout of the channels. After all layers are printed, flood exposure of the entire substrate to UV radiation releases acid from the PAG which hydrolyzes PTHPMA to form hydrophilic poly(methacrylic acid) PMAA, thereby rendering the PTHPMA regions hydrophilic. The layers of these now-hydrophilic patterned regions together define the microfluidic channels. The cross-linking agent (e.g.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 10124302
    Abstract: Sulfur contaminants, such as elemental sulfur (S8), hydrogen sulfide and other sulfur components in water are removed using a silicone-based chemical filter. In one embodiment, a silicone-based chemical filter includes a membrane having a cross-linked silicone that is a reaction product of an olefin and a polyhydrosiloxane.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 10112155
    Abstract: Sulfur contaminants, such as elemental sulfur (S8), hydrogen sulfide and other sulfur components in natural gas liquids (NGLs), diesel fuel and gasoline are removed using a silicone-based chemical filter. In one embodiment, a silicone-based chemical filter includes a membrane having a cross-linked silicone that is a reaction product of an olefin and a polyhydrosiloxane.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 10059727
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 28, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 10053473
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 10040807
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 7, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20180094002
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20180094003
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20180094004
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9930774
    Abstract: A flexible-to-rigid tube is flexible when routed and is then rigidized to increase burst strength. According to the preferred embodiments of the present invention, the flexible-to-rigid tube is included in a cooling plate assembly for transferring heat from electronic components mounted on a circuit board. In one embodiment, the flexible-to-rigid tube (while in a flexible state) includes a polydimethylsiloxane (PDMS) or other silicone containing pendant or terminal epoxy, vinyl and/or acrylate functional groups and an initiator (e.g., a sulfonium salt photoinitiator, a free radical photoinitiator, or a thermal initiator). In another embodiment, triallyl isocyanurate (TAIC) and an initiator are incorporated into a conventional PVC-based tubing material. The flexible-to-rigid tube changes from the flexible state to a rigid state via formation of a cross-linked network upon exposure to actinic radiation or heat.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9908902
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9894754
    Abstract: A flexible-to-rigid tube is flexible when routed and is then rigidized to increase burst strength. According to the preferred embodiments of the present invention, the flexible-to-rigid tube is included in a cooling plate assembly for transferring heat from electronic components mounted on a circuit board. In one embodiment, the flexible-to-rigid tube (while in a flexible state) includes a polydimethylsiloxane (PDMS) or other silicone containing pendant or terminal epoxy, vinyl and/or acrylate functional groups and an initiator (e.g., a sulfonium salt photoinitiator, a free radical photoinitiator, or a thermal initiator). In another embodiment, triallyl isocyanurate (TAIC) and an initiator are incorporated into a conventional PVC-based tubing material. The flexible-to-rigid tube changes from the flexible state to a rigid state via formation of a cross-linked network upon exposure to actinic radiation or heat.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9801271
    Abstract: A flexible-to-rigid tube is flexible when routed and is then rigidized to increase burst strength. According to the preferred embodiments of the present invention, the flexible-to-rigid tube is included in a cooling plate assembly for transferring heat from electronic components mounted on a circuit board. In one embodiment, the flexible-to-rigid tube (while in a flexible state) includes a polydimethylsiloxane (PDMS) or other silicone containing pendant or terminal epoxy, vinyl and/or acrylate functional groups and an initiator (e.g., a sulfonium salt photoinitiator, a free radical photoinitiator, or a thermal initiator). In another embodiment, triallyl isocyanurate (TAIC) and an initiator are incorporated into a conventional PVC-based tubing material. The flexible-to-rigid tube changes from the flexible state to a rigid state via formation of a cross-linked network upon exposure to actinic radiation or heat.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9694337
    Abstract: An enhanced thermal interface material (TIM) gap filler for filling a gap between two substrates (e.g., between a coldplate and an electronics module) includes microcapsules adapted to rupture in a magnetic field. The microcapsules, which are distributed in a TIM gap filler, each have a shell that encapsulates a solvent. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. In one embodiment, (3-aminopropyl) trimethylsilane-coated magnetite nanoparticles are incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. To enable easy removal of one substrate affixed to another substrate by the enhanced TIM gap filler, the substrates are positioned within a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: July 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20170145144
    Abstract: A flexible-to-rigid tube is flexible when routed and is then rigidized to increase burst strength. According to the preferred embodiments of the present invention, the flexible-to-rigid tube is included in a cooling plate assembly for transferring heat from electronic components mounted on a circuit board. In one embodiment, the flexible-to-rigid tube (while in a flexible state) includes a polydimethylsiloxane (PDMS) or other silicone containing pendant or terminal epoxy, vinyl and/or acrylate functional groups and an initiator (e.g., a sulfonium salt photoinitiator, a free radical photoinitiator, or a thermal initiator). In another embodiment, triallyl isocyanurate (TAIC) and an initiator are incorporated into a conventional PVC-based tubing material. The flexible-to-rigid tube changes from the flexible state to a rigid state via formation of a cross-linked network upon exposure to actinic radiation or heat.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20170145164
    Abstract: A flexible-to-rigid tube is flexible when routed and is then rigidized to increase burst strength. According to the preferred embodiments of the present invention, the flexible-to-rigid tube is included in a cooling plate assembly for transferring heat from electronic components mounted on a circuit board. In one embodiment, the flexible-to-rigid tube (while in a flexible state) includes a polydimethylsiloxane (PDMS) or other silicone containing pendant or terminal epoxy, vinyl and/or acrylate functional groups and an initiator (e.g., a sulfonium salt photoinitiator, a free radical photoinitiator, or a thermal initiator). In another embodiment, triallyl isocyanurate (TAIC) and an initiator are incorporated into a conventional PVC-based tubing material. The flexible-to-rigid tube changes from the flexible state to a rigid state via formation of a cross-linked network upon exposure to actinic radiation or heat.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III