Patents by Inventor Robert E. Meyer

Robert E. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9313946
    Abstract: Controlled release of one or more agricultural chemicals is provided by microcapsules adapted to rupture in a magnetic field. The microcapsules, which may be applied to soil, seeds and/or plants, each have a shell that encapsulates an agricultural chemical, such as a fertilizer, herbicide or insecticide. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. For example, (3-aminopropyl)trimethylsilane-coated magnetite nanoparticles may be incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. In one embodiment, microcapsules encapsulating a fertilizer are applied during seed planting. Controlled release is subsequently triggered after an appropriate period of dormancy by positioning a magnetic field generating device proximate the microcapsules to generate a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9315619
    Abstract: Embodiments of the disclosure provide a method for removing residual BPA from a residual BPA-containing substance and a method for making a container with residual BPA removed. The method may consist of preparing a stabilization reagent, wherein water is removed from the stabilization reagent. The method may also include preparing the residual BPA-containing substance. The method may also include reacting the residual BPA-containing substance in a melt condensation process with the stabilization reagent, wherein the stabilization reagent is non-toxic.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: April 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Travis R. Hebig, Joseph Kuczynski, Robert E. Meyer, III, Steven R. Nickel
  • Patent number: 9307693
    Abstract: Controlled release of one or more agricultural chemicals is provided by microcapsules adapted to rupture in a magnetic field. The microcapsules, which may be applied to soil, seeds and/or plants, each have a shell that encapsulates an agricultural chemical, such as a fertilizer, herbicide or insecticide. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. For example, (3-aminopropyl) trimethylsilane-coated magnetite nanoparticles may be incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. In one embodiment, microcapsules encapsulating a fertilizer are applied during seed planting. Controlled release is subsequently triggered after an appropriate period of dormancy by positioning a magnetic field generating device proximate the microcapsules to generate a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9307692
    Abstract: Controlled release of one or more agricultural chemicals is provided by microcapsules adapted to rupture in a magnetic field. The microcapsules, which may be applied to soil, seeds and/or plants, each have a shell that encapsulates an agricultural chemical, such as a fertilizer, herbicide or insecticide. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. For example, (3-aminopropyl)trimethylsilane-coated magnetite nanoparticles may be incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. In one embodiment, microcapsules encapsulating a fertilizer are applied during seed planting. Controlled release is subsequently triggered after an appropriate period of dormancy by positioning a magnetic field generating device proximate the microcapsules to generate a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9303047
    Abstract: A flame retardant filler having brominated silica particles, for example, imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In this example, brominated silica particles serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an exemplary application, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a flame retardant filler comprised of brominated silica particles. In an exemplary method of synthesizing the brominated silica particles, a monomer having a brominated aromatic functional group is reacted with functionalized silica particles (e.g., isocyanate, vinyl, amine, or epoxy functionalized silica particles).
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: April 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9299451
    Abstract: A tamper resistant electronic device includes multiple eFuses that are individually blown in each instance the electronic device is tampered with. For example an eFuse is blown when the electronic device is subjected to a temperature that causes solder reflow. Since it is anticipated that the electronic device may be tampered with in an acceptable way and/or an acceptable number of instances, functionality of the electronic device is altered or disabled only after a threshold number of eFuses are blown. In certain implementations, the threshold number is the number of anticipated acceptable tamper events. Upon a tamper event an individual eFuse is blown. If the total number of blown eFuses is less than the threshold, a next eFuse is enabled so that it may be blown upon a next tamper event.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Travis R. Hebig, Joseph Kuczynski, Robert E. Meyer, III, Steven R. Nickel
  • Patent number: 9283514
    Abstract: Sulfur contaminants, such as elemental sulfur (S8), hydrogen sulfide and other sulfur components in fluids (e.g., air, natural gas, and other gases, as well as water and other liquids) are removed using a silicone-based chemical filter/bath. In one embodiment, a silicone-based chemical filter includes a membrane having a cross-linked silicone that is a reaction product of an olefin and a polyhydrosiloxane. For example, sulfur contaminants in air may be removed by passing the air through the membrane before the air enters a data center or other facility housing computer systems. In another embodiment, a silicone-based chemical bath includes a housing having an inlet port, an outlet port, and a chamber containing a silicone oil. For example, sulfur contaminants in air may be removed by passing the air through the silicone oil in the chamber before the air enters a data center or other facility housing computer systems.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Publication number: 20160052239
    Abstract: An enhanced thermal interface material (TIM) gap filler for filling a gap between two substrates (e.g., between a coldplate and an electronics module) includes microcapsules adapted to rupture in a magnetic field. The microcapsules, which are distributed in a TIM gap filler, each have a shell that encapsulates a solvent. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. In one embodiment, (3-aminopropyl)trimethylsilane-coated magnetite nanoparticles are incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. To enable easy removal of one substrate affixed to another substrate by the enhanced TIM gap filler, the substrates are positioned within a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9255185
    Abstract: A bridged polysilsesquioxane-based flame retardant filler imparts flame retardancy to manufactured articles such as printed circuit boards (PCBs), connectors, and other articles of manufacture that employ thermosetting plastics or thermoplastics. In an exemplary synthetic method, a bridged polysilsesquioxane-based flame retardant filler is prepared by sol-gel polymerization of a monomer having two or more trialkoxysilyl groups attached to an organic bridging group that contains a fire retardant group (e.g., a halogen atom, a phosphinate, a phosphonate, a phosphate ester, and combinations thereof). Bridged polysilsesquioxane particles formed by sol-gel polymerization of (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-diyl))bis(trimethoxysilane), for example, and follow-on sol-gel processing may serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: February 9, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9232691
    Abstract: Controlled release of one or more agricultural chemicals is provided by microcapsules adapted to rupture in a magnetic field. The microcapsules, which may be applied to soil, seeds and/or plants, each have a shell that encapsulates an agricultural chemical, such as a fertilizer, herbicide or insecticide. One or more organosilane-coated magnetic nanoparticles is/are covalently bound into the shell of each microcapsule. For example, (3-aminopropyl)trimethylsilane-coated magnetite nanoparticles may be incorporated into the shell of a urea-formaldehyde (UF) microcapsule during in situ polymerization. In one embodiment, microcapsules encapsulating a fertilizer are applied during seed planting. Controlled release is subsequently triggered after an appropriate period of dormancy by positioning a magnetic field generating device proximate the microcapsules to generate a magnetic field sufficient to rupture the microcapsule shells through magnetic stimulation of the organosilane-coated magnetic nanoparticles.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: January 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20150318269
    Abstract: The chip stack of semiconductor chips with enhanced cooling apparatus includes a first chip with circuitry on a first side and a second chip electrically and mechanically coupled to the first chip by a grid of connectors. The chip stack further includes a thermal interface material pad between the first chip and the second chip. The thermal interface material pad comprises a plurality of nanotubes containing a magnetic material, aligned parallel to mating surfaces of the first chip and the second chip, wherein a hydrophobic tail of oleic acid is wrapped around each one of the plurality of nanotubes and a hydrophilic acid head of the oleic acid is attached to the magnetic material.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20150259526
    Abstract: In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 17, 2015
    Applicant: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20150259514
    Abstract: In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material.
    Type: Application
    Filed: March 31, 2015
    Publication date: September 17, 2015
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Publication number: 20150259510
    Abstract: In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material.
    Type: Application
    Filed: April 1, 2015
    Publication date: September 17, 2015
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9127158
    Abstract: In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: September 8, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9085719
    Abstract: The present invention is directed to a reversibly adhesive thermal interface material for electronic components and methods of making and using the same. More particularly, embodiments of the invention provide thermal interface materials that include a hydrolytically-stable, thermally-reversible adhesive, and a thermally conductive and electrically non-conductive filler, where the thermal interface material is characterized by a thermal conductivity of 0.2 W/m-K or more and an electrical resistivity of 9×1011 ohm-cm or more. The thermally reversible adhesive comprises a functionalized aminopropyl methylsiloxane-dimethylsiloxane copolymer containing a plurality of dienophile functional groups bonded through an imide linkage, preferably maleimide groups, and a crosslinking agent containing a plurality of diene functional group, preferably furan groups. The reactive groups undergo a Diels Alder crosslinking reaction.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9082744
    Abstract: The chip stack of semiconductor chips with enhanced cooling apparatus includes a first chip with circuitry on a first side and a second chip electrically and mechanically coupled to the first chip by a grid of connectors. The chip stack further includes a thermal interface material pad between the first chip and the second chip. The thermal interface material pad comprises a plurality of nanotubes containing a magnetic material, aligned parallel to mating surfaces of the first chip and the second chip, wherein a hydrophobic tail of oleic acid is wrapped around each one of the plurality of nanotubes and a hydrophilic acid head of the oleic acid is attached to the magnetic material.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 9005338
    Abstract: Sulfur contaminants, such as elemental sulfur (S8), hydrogen sulfide and other sulfur components in fluids (e.g., air, natural gas, and other gases, as well as water and other liquids) are removed using a silicone-based chemical filter/bath. In one embodiment, a silicone-based chemical filter includes a membrane having a cross-linked silicone that is a reaction product of an olefin and a polyhydrosiloxane. For example, sulfur contaminants in air may be removed by passing the air through the membrane before the air enters a data center or other facility housing computer systems. In another embodiment, a silicone-based chemical bath includes a housing having an inlet port, an outlet port, and a chamber containing a silicone oil. For example, sulfur contaminants in air may be removed by passing the air through the silicone oil in the chamber before the air enters a data center or other facility housing computer systems.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 8984897
    Abstract: Embodiments of the present invention generally provide for a system that removes excess thermal energy from a datacenter. In one embodiment, the system includes a holding container with highly thermally conductive surfaces installed in the warmest area(s) of the datacenter. Two substances are released into the holding container and are mixed creating a liquid solution and causing an endothermic reaction. The resulting reaction transfers thermal energy from the datacenter air to the new solution. The liquid solution is then pumped out of the datacenter, where it can be passed through a dialyzing membrane or an evaporation chamber, which separates the liquid solution into its two original substances.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Cary M. Huettner, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 8974259
    Abstract: According to embodiments of the invention, an electrical connector structure with an encapsulated corrosion inhibitor may be provided. The structure may include a first electrical connector having a first contact surface. The structure may also include an encapsulated corrosion inhibitor applied to at least a portion of the first contact surface.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Robert E. Meyer, III, Mark D. Plucinski, Timothy J. Tofil, Jason T. Wertz