Patents by Inventor Robert E. Simons

Robert E. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11118783
    Abstract: A candle management device automatically extinguishes a burning candle upon expiration of a user selected time period. The device shields the candle from foreign objects and reduces the risk of undesired combustion. The doors and actuation mechanism used to isolate the candle from the atmosphere and extinguish the candle are contained within the candle management device and are kept from operational interference by outside objects.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: September 14, 2021
    Inventors: Brandy S Bennett, Robert E Simons, Arthur L Bentley, James Ryan Francis
  • Patent number: 11019755
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 25, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. ELLSWORTH, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20200363062
    Abstract: A candle management device automatically extinguishes a burning candle upon expiration of a user selected time period. The device shields the candle from foreign objects and reduces the risk of undesired combustion. The doors and actuation mechanism used to isolate the candle from the atmosphere and extinguish the candle are contained within the candle management device and are kept from operational interference by outside objects.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Applicant: CANDLE MATE, INC
    Inventors: Brandy S Bennett, Robert E Simons, Arthur L Bentley, James Ryan Francis
  • Patent number: 10753236
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10734307
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 10694644
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Michael J. Ellsworth, Jr., Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20200178422
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Application
    Filed: January 22, 2020
    Publication date: June 4, 2020
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 10595447
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10544707
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20200011209
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20190157186
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 10287925
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 14, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10265812
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a heat transfer element including a heat transfer base with opposite first and second sides and a plurality of thermally conductive fins extending from the first side, and with the second side of the heat transfer base to couple to a component(s) to be cooled. The heat sink assembly further includes a coolant-carrying structure attached to the heat transfer element. The coolant-carrying structure includes a coolant-carrying base, and a coolant-carrying compartment through which liquid coolant flows. The coolant-carrying base includes a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins to extend therethrough. The plurality of thermally conductive fins extend into the coolant-carrying compartment through which the liquid coolant flows. In one or more embodiments, the heat transfer element is a metal structure and the coolant-carrying structure is a plastic structure.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. Boday, Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons, Prabjit Singh, Jason T. Wertz
  • Patent number: 10249555
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 2, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 10244665
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10238009
    Abstract: Cooling control methods include measuring a temperature of at least one component of each of multiple nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the nodes based on the comparisons.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Milnes P. David, Madhusudan K. Iyengar, Pritish R. Parida, Robert E. Simons
  • Patent number: 10160072
    Abstract: A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: December 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. Boday, Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons, Prabjit Singh, Jason T. Wertz
  • Publication number: 20180328236
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20180295754
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Application
    Filed: June 12, 2018
    Publication date: October 11, 2018
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 10082048
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: September 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons