Patents by Inventor Robert E. Simons

Robert E. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10070560
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: September 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9949412
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Publication number: 20180082926
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20180077824
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Application
    Filed: November 21, 2017
    Publication date: March 15, 2018
    Inventors: Levi A. CAMPBELL, Michael J. ELLSWORTH, JR., Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9865522
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9763357
    Abstract: Methods of fabricating cooling apparatuses with coolant filters are provided which facilitate heat transfer from an electronic component(s). The method includes providing a cooling apparatus which includes a liquid-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a region of reduced cross-sectional coolant flow area. The heat sink includes a coolant inlet and outlet in fluid communication with the compartment, and the region of reduced cross-sectional coolant flow area provides an increased effective heat transfer coefficient between a main heat transfer surface of the conductive structure and the coolant. A coolant loop is also provided coupled to the coolant inlet and outlet to facilitate flow of coolant through the coolant-carrying compartment, and a coolant filter positioned to filter contaminants from the coolant passing through the heat sink.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9761508
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9750159
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9750165
    Abstract: Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Milnes P. David, Madhusudan K. Iyengar, Pritish R. Parida, Robert E. Simons
  • Patent number: 9687943
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9686891
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9686889
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20170127576
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Application
    Filed: June 7, 2016
    Publication date: May 4, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20170127565
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9623520
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9629286
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9622379
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Publication number: 20170045300
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a heat transfer element including a heat transfer base with opposite first and second sides and a plurality of thermally conductive fins extending from the first side, and with the second side of the heat transfer base to couple to a component(s) to be cooled. The heat sink assembly further includes a coolant-carrying structure attached to the heat transfer element. The coolant-carrying structure includes a coolant-carrying base, and a coolant-carrying compartment through which liquid coolant flows. The coolant-carrying base includes a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins to extend therethrough. The plurality of thermally conductive fins extend into the coolant-carrying compartment through which the liquid coolant flows. In one or more embodiments, the heat transfer element is a metal structure and the coolant-carrying structure is a plastic structure.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 16, 2017
    Inventors: Dylan J. BODAY, Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS, Prabjit SINGH, Jason T. WERTZ
  • Publication number: 20170043437
    Abstract: A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 16, 2017
    Inventors: Dylan J. BODAY, Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS, Prabjit SINGH, Jason T. WERTZ
  • Publication number: 20170049010
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 16, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS