Patents by Inventor Robert E. Simons

Robert E. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9763357
    Abstract: Methods of fabricating cooling apparatuses with coolant filters are provided which facilitate heat transfer from an electronic component(s). The method includes providing a cooling apparatus which includes a liquid-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a region of reduced cross-sectional coolant flow area. The heat sink includes a coolant inlet and outlet in fluid communication with the compartment, and the region of reduced cross-sectional coolant flow area provides an increased effective heat transfer coefficient between a main heat transfer surface of the conductive structure and the coolant. A coolant loop is also provided coupled to the coolant inlet and outlet to facilitate flow of coolant through the coolant-carrying compartment, and a coolant filter positioned to filter contaminants from the coolant passing through the heat sink.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9761508
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9750165
    Abstract: Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Milnes P. David, Madhusudan K. Iyengar, Pritish R. Parida, Robert E. Simons
  • Patent number: 9750159
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9687943
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9686891
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9686889
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9623520
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9629286
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9622379
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9546576
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9546575
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: January 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9504189
    Abstract: A cooling apparatus is provided, which includes: a thermal conductor to cool a heat-dissipating component(s) of an electronics enclosure, the enclosure including an air inlet side through which airflow ingresses. The thermal conductor includes a first conductor portion coupled to the heat-dissipating component(s), and a second conductor portion positioned along the enclosure's air inlet side. The apparatus further includes one or more air-cooled heat sinks coupled to the second conductor portion to facilitate transfer of heat from the second conductor portion to the airflow ingressing into the enclosure, and one or more thermoelectric devices coupled to at least one of the first or second conductor portions to selectively provide auxiliary cooling.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: November 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9474186
    Abstract: A method is provided for dissipating heat from a rack. The method includes: disposing a coolant-cooled heat exchanger within the rack, and providing a coolant control apparatus. The coolant control apparatus includes at least one coolant recirculation conduit coupled in fluid communication between a facility coolant supply and return, wherein the facility coolant supply and return facilitate providing facility coolant to the heat exchanger. The control apparatus further includes a coolant pump(s) associated with the recirculation conduit(s) and a controller which monitors a temperature of facility coolant supplied to the heat exchanger, and redirects facility coolant, via the coolant recirculation conduit(s) and coolant pump(s), from the facility coolant return to the facility coolant supply to, at least in part, ensure that facility coolant supplied to the heat exchanger remains above a dew point temperature.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9470439
    Abstract: Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system, which includes an expansion component, an evaporator, a compressor and a condenser coupled in fluid communication. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant separator coupled in fluid communication with the refrigerant flow path. The separator includes a refrigerant cold filter and a thermoelectric array. At least a portion of refrigerant passing through the refrigerant flow path passes through the cold filter, and the thermoelectric array provides cooling to the cold filter to cool refrigerant passing through the filter. By cooling refrigerant passing through the filter, contaminants solidify from the refrigerant, and are deposited in the cold filter.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Evan G. Colgan, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9446487
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: September 20, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9439325
    Abstract: Cooling apparatuses, cooled electronic modules, and methods of fabrication are provided which facilitate heat transfer from one or more electronic components to a coolant. The cooling apparatus includes a coolant-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a varying cross-sectional coolant flow area through which coolant flows in a direction substantially parallel to a main heat transfer surface of the structure coupled to the electronic component(s). The coolant-cooled heat sink includes a coolant inlet and a coolant outlet in fluid communication with the coolant-carrying compartment, and the coolant flow area of the coolant-carrying compartment decreases, at least in part, in a direction of coolant flow through the coolant-carrying compartment.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: September 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9420721
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 16, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9414525
    Abstract: Cooling apparatuses, cooled electronic modules, and methods of fabrication are provided which facilitate heat transfer from one or more electronic components to a coolant. The cooling apparatus includes a coolant-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a varying cross-sectional coolant flow area through which coolant flows in a direction substantially parallel to a main heat transfer surface of the structure coupled to the electronic component(s). The coolant-cooled heat sink includes a coolant inlet and a coolant outlet in fluid communication with the coolant-carrying compartment, and the coolant flow area of the coolant-carrying compartment decreases, at least in part, in a direction of coolant flow through the coolant-carrying compartment.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: August 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9414519
    Abstract: Dehumidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet or outlet side of the rack, wherein air flows through the rack from the air inlet to the air outlet side. The heat exchanger is positioned for air passing through the electronics rack to pass across the heat exchanger, and is in fluid communication with a coolant loop for passing coolant therethrough at a temperature below a dew point temperature of the air passing across the heat exchanger so that air passing across the heat exchanger is dehumidified and cooled. A condensate collector, disposed below the heat exchanger, collects liquid condensate from the dehumidifying of air passing through the electronics rack, wherein the heat exchanger includes a plurality of sloped surfaces configured to facilitate drainage of liquid condensate from the heat exchanger to the condensate collector.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: August 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons