Patents by Inventor Robert E. Simons

Robert E. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160143185
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143190
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: August 19, 2015
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143184
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Application
    Filed: August 18, 2015
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143192
    Abstract: Cooling control methods include measuring a temperature of at least one component of each of multiple nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the nodes based on the comparisons.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: TIMOTHY J. CHAINER, MILNES P. DAVID, MADHUSUDAN K. IYENGAR, PRITISH R. PARIDA, ROBERT E. SIMONS
  • Publication number: 20160141937
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160136851
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: August 18, 2015
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143189
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, Jr., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9345169
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: May 17, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9338924
    Abstract: Dehumidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet or outlet side of the rack, wherein air flows through the rack from the air inlet to the air outlet side. The heat exchanger is positioned for air passing through the electronics rack to pass across the heat exchanger, and is in fluid communication with a coolant loop for passing coolant therethrough at a temperature below a dew point temperature of the air passing across the heat exchanger so that air passing across the heat exchanger is dehumidified and cooled. A condensate collector, disposed below the heat exchanger, collects liquid condensate from the dehumidifying of air passing through the electronics rack, wherein the heat exchanger includes a plurality of sloped surfaces configured to facilitate drainage of liquid condensate from the heat exchanger to the condensate collector.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 10, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9332674
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 3, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9313920
    Abstract: Cooling apparatuses and methods are provided facilitating transfer of heat from a working fluid to a coolant. The cooling apparatus includes a vapor condenser which includes a condenser housing with a condensing chamber accommodating the working fluid and coolant, which are in direct contact within the condensing chamber and are immiscible fluids. The condensing chamber includes a working fluid vapor layer and a working fluid liquid layer; and a working fluid vapor inlet facilitates flow of fluid vapor into the condensing chamber, and a working fluid vapor outlet facilitates egress of working fluid liquid from the condensing chamber. A coolant inlet structure facilitates ingress of coolant into the working fluid vapor layer of the condensing chamber in direct contact with the working fluid vapor to facilitate condensing the vapor into working fluid liquid, and the coolant outlet structure facilitates subsequent egress of coolant from the condensing chamber.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9303926
    Abstract: Vapor condensers and cooling apparatuses facilitating vapor condensation cooling of a coolant employed in cooling an electronic device or electronic subsystem. The vapor condenser includes a thermally conductive base structure having an operational orientation when the condenser is facilitating vapor condensate formation, and a plurality of thermally conductive condenser fins extending from the thermally conductive base structure. The plurality of thermally conductive condenser fins have a varying cross-sectional perimeter along at least a portion of their length. The cross-sectional perimeters of the plurality of thermally conductive condenser fins are configured to increase in a direction of condensate travel through the thermally conductive base structure.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 5, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9301433
    Abstract: Apparatus and method are provided for cooling an electronic component. The apparatus includes a refrigerant evaporator in thermal communication with a component(s) to be cooled, and a refrigerant loop coupled in fluid communication with the evaporator for facilitating flow of refrigerant through the evaporator. The apparatus further includes a compressor in fluid communication with a refrigerant loop, an air-cooled heat sink coupled to the refrigerant evaporator, for providing backup cooling to the electronic component in a backup, air cooling mode, and a controllable refrigerant heater coupled to the heat sink. The refrigerant heater is in thermal communication across the heat sink with refrigerant passing through the refrigerant evaporator, and is controlled in a primary, refrigeration cooling mode to apply an auxiliary heat load to refrigerant passing through the refrigerant evaporator to ensure that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 29, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20160088777
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9291281
    Abstract: Cooling apparatuses and methods are presented for facilitating dissipation of heat generated by one or more electronic components. The apparatuses include, for instance, a coolant-cooled heat sink and a thermostat-controlled valve. The heat sink includes one or more coolant-carrying channels and one or more valve wells intersecting the channels. The thermostat-controlled valve is disposed, at least partially, within a respective valve well so as to intersect a respective coolant-carrying channel, and includes a valve disk and a thermal-sensitive actuator mechanically coupled to rotate the valve disk. The valve disk is rotatable between an open position where coolant is allowed to flow through the respective coolant-carrying channel, and a closed position where coolant is blocked from flowing through the respective channel. The actuator rotates the valve disk between the open position and the closed position, dependent on heating of the thermal-sensitive actuator by the electronic component(s).
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9295181
    Abstract: A coolant-conditioning unit is provided which includes a facility coolant path, having a facility coolant flow control valve, and a system coolant path accommodating a system coolant, and having a bypass line with a system coolant bypass valve. A heat exchanger is coupled to the facility and system coolant paths to facilitate transfer of heat from the system coolant to facility coolant in the facility coolant path, and the bypass line is disposed in the system coolant path in parallel with the heat exchanger. A controller automatically controls a regulation position of the coolant bypass valve and a regulation position of the facility coolant flow control valve based on a temperature of the system coolant, and automatically adjusts the regulation position of the system coolant bypass valve to facilitate maintaining the facility coolant flow control valve at or above a specified, partially open, minimum regulation position.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9288932
    Abstract: Cooling systems and methods are provided which include a heat sink having a housing with a compartment, a coolant inlet, and a coolant outlet. The housing is configured for a coolant to flow from the coolant inlet through the compartment to the coolant outlet, wherein the coolant is transferring heat extracted from one or more electronic components. The heat sink further includes one or more heat pipes having a first portion disposed within the compartment of the housing and a second portion disposed outside the housing. The heat pipe(s) is configured to extract heat from the coolant flowing through the compartment, and to transfer the extracted heat to the second portion disposed outside the housing. The second portion outside the housing is disposed to facilitate conducting the extracted heat into the ground.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9285050
    Abstract: Methods are presented for facilitating dissipation of heat generated by one or more electronic components. The methods include providing a coolant-cooled heat sink and a thermostat-controlled valve. The heat sink includes one or more coolant-carrying channels and one or more valve wells intersecting the channels. The thermostat-controlled valve is disposed, at least partially, within a respective valve well so as to intersect a respective coolant-carrying channel, and includes a valve disk and a thermal-sensitive actuator mechanically coupled to rotate the valve disk. The valve disk is rotatable between an open position where coolant is allowed to flow through the respective coolant-carrying channel, and a closed position where coolant is blocked from flowing through the respective channel. The actuator rotates the valve disk between the open position and the closed position, dependent on heating of the thermal-sensitive actuator by the electronic component(s).
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9282675
    Abstract: A heat sink and method of fabrication are provided for removing heat from an electronic component(s). The heat sink includes a heat sink base and frame. The base has a first coefficient of thermal expansion (CTE), and includes a base surface configured to couple to the electronic component to facilitate removal of heat. The frame has a second CTE, and is configured to constrain the base surface in opposing relation to the electronic component, wherein the first CTE is greater than the second CTE. At least one of the heat sink base or frame is configured so that heating of the heat sink base results in a compressive force at the base surface of the heat sink base towards the electronic component that facilitates heat transfer from the electronic component. A thermal interface material is disposed between the base surface and the electronic component.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: March 8, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons, Prabjit Singh
  • Patent number: 9282678
    Abstract: Cooled electronic systems and cooling methods are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the electronic system. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into, for instance, one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink is configured and disposed to physically couple to the enclosure and facilitates rejection of heat from the fluid disposed within the compartment when the field-replaceable bank of electronic components is operatively inserted into the electronic system.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 8, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons