Patents by Inventor Robert J. Schmidt

Robert J. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5026951
    Abstract: A combination isomerization and liquid phase adsorptive separation process is given increased efficiency and cost effectiveness by the elimination of a column for the separation of desorbent material from selectively retained components. By decreasing the ratio of normal paraffin desorbent to the selective pore volume circulation rate, the extract column can be eliminated without providing other means for the rejection or recovery of desorbent material. This reduction in the ratio of normal paraffin desorbent to selective pore volume circulation rate has been found not to decrease the recovery from the adsorption section. The elimination of the column provides a substantial decrease in the cost of the equipment to operate a combination isomerization zone and liquid phase adsorption section. In an alternate arrangement, the extract column is replaced with a deisohexanizer column. The deisohexanizer column can be used to produce a C.sub.5 -C.sub.6 product stream having research octane numbers of 93 or greater.
    Type: Grant
    Filed: January 9, 1990
    Date of Patent: June 25, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Lynn H. Rice, Srikantiah Raghuram
  • Patent number: 5026950
    Abstract: A combined process for hydrotreating and isomerizing a C.sub.4 -C.sub.7 feedstock is simplified and made more efficient by the use of a common hydrogen source and low hydrogen to hydrocarbon ratio in both the hydrotreating and isomerization steps of the invention. The method supplies hydrogen to a combined hydrotreatment and isomerization process for the isomerization of a feed stream comprising C.sub.4 -C.sub.7 hydrocarbons. The hydrocarbon feed stream contains sulfur and oxygen contaminants and is combined with a hydrogen-containing stream in an amount that produces a maximum hydrogen to hydrocarbon ratio of 0.9 stdm.sup.3 m.sup.3 (50 SCFB). The hydrotreater feed is contacted in a hydrotreater reactor with a catalyst comprising a Group VIB metal and a Group VIII metal on an alumina support.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: June 25, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann
  • Patent number: 5017541
    Abstract: An improved catalyst particle is disclosed for the conversion of hydrocarbons which comprises a refractory inorganic-oxide support, a Friedel-Crafts metal halide, and a surface-layer platinum-group metal component, wherein the concentration of platinum-group metal component on the surface layer of each catalyst particle is at least 1.5 times the concentration in the central core of the catalyst particle. An isomerization process also is disclosed which is particularly effective for the conversion of C.sub.4 -C.sub.7 alkanes.
    Type: Grant
    Filed: June 27, 1990
    Date of Patent: May 21, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann, Mark R. Ford, C. David Low, Frank H. Adams
  • Patent number: 5004859
    Abstract: An improved catalyst particle is disclosed for the conversion of hydrocarbons which comprises a refractory inorganic-oxide support, a Friedel-Crafts metal halide, and a surface-layer platinum-group metal component, wherein the concentration of platinum-group metal component on the surface layer of each catalyst particle is at least 1.5 times the concentration in the central core of the catalyst particle. An isomerization process also is disclosed which is particularly effective for the conversion of C.sub.4 -C.sub.7 alkanes.
    Type: Grant
    Filed: November 13, 1989
    Date of Patent: April 2, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann, Mark R. Ford, C. David Low, Frank H. Adams
  • Patent number: 4929794
    Abstract: A combined process for hydrotreating and isomerizing a C.sub.4 -C.sub.7 feedstock is simplified and made more efficient by the use of a common hydrogen source and low hydrogen to hydrocarbon ratio in both the hydrotreating and isomerization steps of the invention. The method supplies hydrogen to a combined hydrotreatment and isomerization process for the isomerization of a feed stream comprising C.sub.4 -C.sub.7 hydrocarbons. The hydrocarbon feed stream contains sulfur and oxygen contaminants and is combined with a hydrogen-containing stream in an amount that produces a maximum hydrogen to hydrocarbon ratio of 0.9 stdm.sup.3 /m.sup.3 (50 SCFB). The hydrotreater feed is contacted in a hydrotreater reactor with a catalyst comprising a Group VIB metal and a Group VII metal on an alumina support.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: May 29, 1990
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann
  • Patent number: 4901828
    Abstract: A shock absorber for damping the movement of the body of an automobile is provided. The shock absorber comprises a pressure cylinder forming a working chamber operable to store damping fluid. The shock absorber further comprises a reciprocating piston disposed in the working chamber operable to divide the working chamber into first and second portions. An axially extending piston rod is disposed within the working chamber and is connected to the piston. Finally, the shock absorber includes an annular collar and a split ring for controlling the displacement of the piston.
    Type: Grant
    Filed: May 31, 1989
    Date of Patent: February 20, 1990
    Assignee: Monroe Auto Equipment Company
    Inventors: Robert J. Schmidt, Jerome J. Zawada, Jr.
  • Patent number: 4886928
    Abstract: A novel dehydrogenation process is disclosed which utilizes a catalyst comprising a platinum group component, a component selected from the group comprising scandium, yttrium, lanthanum, and actinium, a component selected from the group comprising tin, lead, and germanium, less than 0.3 wt. % of a halogen component, and an optional Group IA or IIA component, all on a refractory inorganic oxide support.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: December 12, 1989
    Assignee: UOP
    Inventors: Tamotsu Imai, Robert J. Schmidt
  • Patent number: 4877919
    Abstract: Butane is isomerized in the presence of substantial quantities of C.sub.5 and C.sub.6 hydrocarbons using an alumina catalyst having from 0.01 to 0.25 wt. % platinum and 2 to 10 wt. % of a chloride component. The process operates at temperatures ranging from 180.degree.-225.degree. C. (355.degree.-435.degree. F.) and produces a high yield of isobutane while at the same time providing a high level of C.sub.5 and C.sub.6 hydrocarbon isomerization without a significant increase in yield loss of C.sub.5 and higher hydrocarbons. The process can be carried out in a single reaction zone or in a series of reaction zones to increase the production of isoparaffins.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: October 31, 1989
    Assignee: UOP
    Inventor: Robert J. Schmidt
  • Patent number: 4834866
    Abstract: A process for splitting a feed containing C.sub.6 cycloparaffins, C.sub.6 normal paraffins, and higher boiling hydrocarbons uses an isomerization zone to open the rings of cyclic hydrocarbons and a single fractionation zone to separate the feed and the isomerization product into a C.sub.7 plus stream that can be used as a feed stream to a reformer and an isoparaffin stream consisting of C.sub.6 and lighter hydrocarbons that is deficient in cyclic hydrocarbons. The process uses a chlorided platinum-alumina catalyst to open rings and isomerize C.sub.6 hydrocarbons. Additional feed streams of normal C.sub.5 paraffins may be added to the process ahead of the isomerization zone to increase the yield of isoparaffin from the isomerization zone. This process offers a simple flow scheme that yields a high volume of high octane isomerate while reducing the quantity of C.sub.6 cyclic hydrocarbons in a reformer feed. Converting the C.sub.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: May 30, 1989
    Assignee: UOP
    Inventor: Robert J. Schmidt
  • Patent number: 4804803
    Abstract: A process for the isomerization of C.sub.4 -C.sub.6 paraffins that uses a highly active catalyst to isomerize the feed in the presence of very little hydrogen. The process is characterized by good stability and high conversion with effluent hydrogen to hydrocarbon ratios of 0.05 or less. Continued operation at low hydrogen concentrations is made possible by the remarkably low coking tendency of the catalyst, especially during periods of temporary sulfur deactivation. The low hydrogen to hydrocarbon ratio simplifies the process and makes it cheaper to operate by eliminating facilities for the recovery and recycle of hydrogen.
    Type: Grant
    Filed: December 7, 1987
    Date of Patent: February 14, 1989
    Assignee: UOP Inc.
    Inventors: Robert J. Schmidt, Lynn H. Rice, Laurence Stine
  • Patent number: 4795545
    Abstract: A pretreatment process for removal of contaminants from a light hydrocarbon feedstock is presented. The feedstock is passed to a first adsorption zone containing a molecular sieve and thereafter passed to a second adsorption zone containing activated alumina. The process produces a hydrocarbon feedstock substantially free of sulfur compounds, oxygenates, and water. Such a process finds utility as a feed pretreatment step preceding a catalytic isomerization process.
    Type: Grant
    Filed: September 17, 1987
    Date of Patent: January 3, 1989
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4783568
    Abstract: A process is disclosed for the production of a desired xylene isomer, preferably paraxylene, and high quality benzene. The desired isomer (11) is recovered from the feed (1) and recycle (3) streams in a xylene separation zone (2). The raffinate (5) from the separation zone is passed into a catalytic xylene isomerization zone (6). The isomerization zone effluent stream is passed into a high severity transalkylation zone (14) which contains a catalyst comprising both a ZSM-5 zeolite and mordenite. Ethylbenzene in the feed stream is subjected to staged conversion in the two catalytic reaction zones to both xylenes and benzene. The overall ethylbenzene conversion efficiency is improved.
    Type: Grant
    Filed: September 25, 1987
    Date of Patent: November 8, 1988
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4783575
    Abstract: A C.sub.4 -C.sub.6 feed to an isomerization zone containing substantial amounts of cyclic hydrocarbons is contacted with a high chloride, platinum alumina catalyst to simultaneously open cyclic hydrocarbon rings and isomerize paraffins to more highly branched paraffins. The process can operate at relatively low severity conditions that provide favorable equilibrium conditions for isoparaffin conversion. The ring opening is also obtained without excessive generation of light hydrocarbons. Multiple stage reaction zones may be used to operate the first stage at slightly higher severity than the second stage to maximize ring opening and obtain favorable equilibrium of iso to normal paraffins.
    Type: Grant
    Filed: December 17, 1987
    Date of Patent: November 8, 1988
    Assignee: UOP Inc.
    Inventors: Robert J. Schmidt, Laurence O. Stine
  • Patent number: 4748340
    Abstract: A load share system which connects to the power outputs of two power supplies to determine any deviation of the output currents relative to each other and provides a correction signal representative of the deviation. The system generates two balance signals of similar magnitude and opposite polarity and delivers one of the balance signals to a sense input of one power supply and the other signal to a sense input of the other power supply to balance the power outputs.
    Type: Grant
    Filed: November 17, 1986
    Date of Patent: May 31, 1988
    Assignee: Liberty Engineering, Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4697039
    Abstract: A process is disclosed for the production of a desired xylene isomer, preferably paraxylene, and high quality benzene. The desired isomer is recovered from the feed and recycle streams in a xylene separation zone. The net effluent or raffinate from the separation zone is passed into a catalytic xylene isomerization zone. The isomerization zone effluent stream is passed into a high severity transalkylation zone. Ethylbenzene in the feed stream is subjected to staged conversion in the two catalytic reaction zones and thereby converted to both xylenes and benzene.
    Type: Grant
    Filed: February 9, 1987
    Date of Patent: September 29, 1987
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4665273
    Abstract: This invention relates to a process for isomerization of sulfur containing isomerizable hydrocarbons, especially saturated hydrocarbons having from 4 to 7 carbon atoms per molecule. More specifically, this invention relates to a process for isomerizing a sulfur containing combined feed where the sulfur compounds are controlled to achieve a level of from about 5 wt. ppm to about 150 wt. ppm utilizing a catalyst composition containing a hydrogen form crystalline aluminosilicate, a Group VIII metal, a refractory oxide and having a surface area of at least 580 m.sup.2 /g.
    Type: Grant
    Filed: February 14, 1986
    Date of Patent: May 12, 1987
    Assignee: UOP Inc.
    Inventors: James A. Johnson, Robert J. Schmidt
  • Patent number: 4642406
    Abstract: A process is disclosed for the production of high quality benzene and a desired xylene isomer, preferably paraxylene, from a mixture of C.sub.7 -plus alkylaromatic hydrocarbons. The desired xylene isomer is recovered by absorptive separation from a stream of two or three xylene isomers. The resultant isomer-depleted stream is passed into a transalkylation zone together with both feed and recycled toluene and C.sub.9 aromatic hydrocarbons instead of being passed into a xylene isomerization zone. Benzene and xylenes are fractionated from the transalkylation zone effluent stream, with the xylenes being passed into the absorptive separation zone. A nonmetal catalyst is employed in the transalkylation zone, which must be operated at high severity (high temperature) conditions.
    Type: Grant
    Filed: September 13, 1985
    Date of Patent: February 10, 1987
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4484013
    Abstract: A process is disclosed for the production of isopropanol and tertiary butyl alcohol from C.sub.3 and C.sub.4 hydrocarbons. The preferred embodiment of the invention comprises dehydrogenation of paraffins and direct hydration of the resulting olefins. Fractional distillation steps are employed between the dehydrogenation and dehydration zones and in the recycle stream to recover unconverted hydrocarbons leaving the hydration zone. This accommodates different hydration rates and prevents the passage of propylene into the dehydrogenation zone. In an alternative embodiment, the feed stream comprises olefins and is fed to the fractionation system. The dehydrogenation zone may be deleted from this embodiment.
    Type: Grant
    Filed: December 30, 1983
    Date of Patent: November 20, 1984
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4469903
    Abstract: A process is disclosed for the production of aliphatic alcohol by the direct hydration of an olefinic hydrocarbon. The process is directed to the production of isopropyl alcohol. The process includes the recovery of the alcohol from a water-rich hydration zone effluent stream by countercurrent liquid-liquid extraction against a paraffinic solvent. The solvent is derived from paraffins originally admixed with the olefin-containing feed stream, and the raffinate stream comprises water which is recycled in the process. Expensive product fractionation is eliminated in the production of a fuel grade isopropyl alcohol.
    Type: Grant
    Filed: September 21, 1983
    Date of Patent: September 4, 1984
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: D276911
    Type: Grant
    Filed: May 14, 1982
    Date of Patent: December 25, 1984
    Inventor: Robert J. Schmidt