Patents by Inventor Robert Mears

Robert Mears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070015344
    Abstract: A method for making a semiconductor device may include forming a superlattice layer including a plurality of stacked groups of layers, and forming at least one pair of spaced apart stress regions on opposing sides of the superlattice layer to induce a strain therein. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 18, 2007
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott Kreps
  • Publication number: 20070007508
    Abstract: A semiconductor device may include a stress layer and a strained superlattice layer above the stress layer and including a plurality of stacked groups of layers. More particularly, each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 11, 2007
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott A. Kreps
  • Publication number: 20070010040
    Abstract: A method for making a semiconductor device may include forming a stress layer, and forming a strained superlattice layer above the stress layer and including a plurality of stacked groups of layers. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 11, 2007
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott Kreps
  • Publication number: 20060019454
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.
    Type: Application
    Filed: May 25, 2005
    Publication date: January 26, 2006
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Marek Hytha, Scott Kreps, Robert Stephenson, Jean Augustin Yiptong, Ilija Dukovski, Kalipatnam Rao, Samed Halilov, Xiangyang Huang
  • Publication number: 20060011905
    Abstract: A semiconductor device may include a semiconductor substrate and at least one active device adjacent the semiconductor substrate. The at least one active device may include an electrode layer, a high-K dielectric layer underlying the electrode layer and in contact therewith, and a superlattice underlying the high-K dielectric layer opposite the electrode layer and in contact with the high-K dielectric layer. The superlattice may include a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: May 25, 2005
    Publication date: January 19, 2006
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Marek Hytha, Scott Kreps, Robert Stephenson, Jean Augustin Chan yiptong, Ilija Dukovski, Kalipatnam Rao, Samed Halilov, Xiangyang Huang
  • Publication number: 20050279991
    Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least one group of layers of the superlattice may be substantially undoped.
    Type: Application
    Filed: May 25, 2005
    Publication date: December 22, 2005
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott Kreps
  • Publication number: 20050282330
    Abstract: A method for making a semiconductor device may include forming a superlattice including a plurality of stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least one group of layers of the superlattice may be substantially undoped.
    Type: Application
    Filed: May 25, 2005
    Publication date: December 22, 2005
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Scott Kreps
  • Publication number: 20050207758
    Abstract: An optical wireless local area network using line of sight optical links. The base station and terminal stations are provided with optical transceivers which include a transmitter array and detector array. The transmitter array consists of an array of resonant cavity light emitting diodes integrated using flip-chip technology with a CMOS driver circuit. The driver circuit includes constant bias, current peaking and charge extraction. The driver circuitry is compact and can be confined within a region underlying the corresponding light source. The detector array consists of an array of photo diodes, provided with sense circuitry consisting of a pre-amplifier and post-amplifier. The diodes and sense circuitry are also integrated using a flip-chip technique. The light emitter and the detector may include adaptive optical elements to steer and/or focus the light beams.
    Type: Application
    Filed: May 17, 2005
    Publication date: September 22, 2005
    Applicant: ISIS INNOVATION LIMITED
    Inventors: David Edwards, Dominic O'Brien, Grahame Faulkner, David Holburn, Robert Mears
  • Publication number: 20050205756
    Abstract: An optical wireless local area network using line of sight optical links. The base station and terminal stations are provided with optical transceivers which include a transmitter array and detector array. The transmitter array consists of an array of resonant cavity light emitting diodes integrated using flip-chip technology with a CMOS driver circuit. The driver circuit includes constant bias, current peaking and charge extraction. The driver circuitry is compact and can be confined within a region underlying the corresponding light source. The detector array consists of an array of photo diodes, provided with sense circuitry consisting of a pre-amplifier and post-amplifier. The diodes and sense circuitry are also integrated using a flip-chip technique. The light emitter and the detector may include adaptive optical elements to steer and/or focus the light beams.
    Type: Application
    Filed: May 17, 2005
    Publication date: September 22, 2005
    Applicant: ISIS INNOVATION LIMITED
    Inventors: David Edwards, Dominic O'Brien, Grahame Faulkner, David Holburn, Robert Mears
  • Publication number: 20050184286
    Abstract: A semiconductor device includes a substrate, and at least one MOSFET adjacent the substrate. The MOSFET may include a superlattice channel that, in turn, includes a plurality of stacked groups of layers. The MOSFET may also include source and drain regions laterally adjacent the superlattice channel, and a gate overlying the superlattice channel for causing transport of charge carriers through the superlattice channel in a parallel direction relative to the stacked groups of layers. Each group of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice channel may have a higher charge carrier mobility in the parallel direction than would otherwise occur.
    Type: Application
    Filed: March 25, 2005
    Publication date: August 25, 2005
    Applicant: RJ Mears, LLC, State of Incorporation: Delaware
    Inventors: Robert Mears, Jean Augustin Chan Sow Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
  • Publication number: 20050173697
    Abstract: A semiconductor device may include a substrate and at least one MOSFET adjacent the substrate including a superlattice. The superlattice may include a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may comprise a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The MOSFET may further include source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.
    Type: Application
    Filed: January 25, 2005
    Publication date: August 11, 2005
    Applicant: RJ MEARS, LLC
    Inventors: Robert Mears, Jean Chan Sow Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
  • Publication number: 20050173696
    Abstract: A method for making a semiconductor device may include providing a substrate, and forming at least one MOSFET adjacent the substrate by forming a superlattice including a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.
    Type: Application
    Filed: January 25, 2005
    Publication date: August 11, 2005
    Applicant: RJ MEARS, LLC
    Inventors: Robert Mears, Jean Augustin Chan Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
  • Publication number: 20050170591
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The method may further include forming a semiconductor layer adjacent the superlattice and comprising at least one first region therein including a first conductivity type dopant. At least one second region may be formed in the superlattice including a second conductivity type dopant to define, with the at least one first region, at least one semiconductor junction.
    Type: Application
    Filed: April 1, 2005
    Publication date: August 4, 2005
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Robert Stephenson
  • Publication number: 20050167649
    Abstract: A semiconductor device may include a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The semiconductor device may further include a semiconductor layer adjacent the superlattice and comprising at least one first region therein including a first conductivity type dopant. The superlattice may also include at least one second region therein including a second conductivity type dopant to define, with the at least one first region, at least one semiconductor junction.
    Type: Application
    Filed: April 1, 2005
    Publication date: August 4, 2005
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Robert Stephenson
  • Publication number: 20050167653
    Abstract: A semiconductor device may include a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The superlattice may further include at least one pair of oppositely-doped regions therein defining at least one semiconductor junction.
    Type: Application
    Filed: April 1, 2005
    Publication date: August 4, 2005
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Robert Stephenson
  • Publication number: 20050170590
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming at least one pair of oppositely-doped regions in the superlattice defining at least one semiconductor junction.
    Type: Application
    Filed: April 1, 2005
    Publication date: August 4, 2005
    Applicant: RJ Mears, LLC.
    Inventors: Robert Mears, Robert Stephenson
  • Publication number: 20050087736
    Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.
    Type: Application
    Filed: November 18, 2004
    Publication date: April 28, 2005
    Applicant: RJ Mears, LLC.
    Inventors: Robert Mears, Jean Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
  • Publication number: 20050087738
    Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.
    Type: Application
    Filed: November 18, 2004
    Publication date: April 28, 2005
    Inventors: Robert Mears, Jean Sow Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
  • Publication number: 20050032247
    Abstract: A method for making an integrated circuit may include forming at least one active optical device including a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a waveguide coupled to the at least one active optical device.
    Type: Application
    Filed: September 9, 2004
    Publication date: February 10, 2005
    Applicant: RJ MEARS, LLP
    Inventors: Robert Mears, Robert Stephenson
  • Publication number: 20050031247
    Abstract: An integrated circuit may include at least one active optical device and a waveguide coupled thereto. The waveguide may include a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: September 9, 2004
    Publication date: February 10, 2005
    Applicant: RJ MEARS, LLC
    Inventors: Robert Mears, Robert Stephenson