Patents by Inventor Robert Tobin

Robert Tobin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10821652
    Abstract: The present disclosure is directed to a mold assembly for vacuum forming a component. The mold assembly includes plurality of support plates and a plurality of mold plates removably coupled to the plurality of support plates. The plurality of mold plates is stacked and removably coupled together to form a mold configured for forming the component. Each mold plate including a first surface partially defining a top surface of the mold, a second surface spaced apart from the first surface, a third surface extending from the first surface to the second surface, and a fourth surface spaced apart from the third surface and extending from the first surface to the second surface.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Boobalan Ayyasamy
  • Patent number: 10821696
    Abstract: Methods for manufacturing a wind turbine rotor blade having a flatback airfoil configuration along at least a portion of a span of the rotor blade include providing a shell mold of the rotor blade. The method also includes laying up an outer skin layer of the rotor blade into the shell mold. Further, the method includes placing at least one pre-fabricated corner of the flatback airfoil configuration into the shell mold. The pre-fabricated corner(s) has a pointed edge. The method also includes infusing the outer skin layer with the pre-fabricated corner(s) to form the flatback airfoil configuration.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: David Roberts, Nicholas K. Althoff, Michael Wenani Nielsen, James Robert Tobin
  • Patent number: 10773464
    Abstract: The present disclosure is directed to an apparatus and method for manufacturing a composite component. The apparatus includes a mold onto which the composite component is formed. The mold is disposed within a grid defined by a first axis and a second axis. The apparatus further includes a first frame assembly disposed above the mold and a plurality of machine heads coupled to the first frame assembly within the grid in an adjacent arrangement along the first axis. At least one of the mold or the plurality of machine heads is moveable along the first axis, the second axis, or both. At least one of the machine heads of the plurality of machine heads is moveable independently of one another along a third axis. A second frame assembly is moveable above the mold along the first axis, the second axis, or both. The second frame assembly includes a holding device. The holding device affixes to and releases from an outer skin to place and displace the outer skin at the mold.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Stephen Bertram Johnson
  • Patent number: 10738759
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: August 11, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10641240
    Abstract: The present disclosure is directed to methods for joining rotor blade components using thermoplastic welding.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso
  • Patent number: 10612517
    Abstract: The present disclosure is directed to a rotor blade assembly for a wind turbine. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a blade tip and a blade root. Further, the rotor blade assembly includes a flexible extension having a first end and a second end. More specifically, the first end is mounted to a surface of the rotor blade and the second end is free. As such, during operation of the wind turbine, the flexible extension passively adjusts with a changing angle of attack of the rotor blade, thereby reducing variations in blade loading.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 7, 2020
    Assignee: General Electric Company
    Inventors: Stefan Herr, James Robert Tobin
  • Publication number: 20200088160
    Abstract: The present disclosure is directed to methods for attaching a plurality of surface features to a rotor blade of a wind turbine. Such methods may include direct molding of the surface features to the rotor blade, bonding arrays of connected components to the rotor blade and subsequently removing connections between components, as well as using a flexible template with or without a tinted adhesive.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 19, 2020
    Inventors: James Robert Tobin, Murray Fisher, Madireddi Vasu Datta, Drew Adam Wetzel
  • Patent number: 10584676
    Abstract: Rotor blade assemblies for wind turbines are provided. A rotor blade assembly includes a rotor blade. In some embodiments, the rotor blade assembly further includes a surface feature configured on an exterior surface of the rotor blade, the surface feature having an exterior mounting surface. At least a portion of the exterior mounting surface has a contour in an uninstalled state that is different from a curvature of the exterior surface of the rotor blade at a mount location of the surface feature on the rotor blade. In other embodiments, the rotor blade assembly further includes a seal member surrounding at least a portion of a perimeter of the surface feature. The seal member contacts and provides a transition between the exterior surface and the surface feature.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Scott Gabell Riddell, Michael Christopher Booth, Megan Michela Wilson
  • Patent number: 10533533
    Abstract: The present disclosure is directed to a method of manufacturing a modular rotor blade for a wind turbine. The method includes providing a plurality of resin systems for manufacturing a plurality of blade components for the modular rotor blade. Each of the resin systems includes at least one of a thermoset material or a thermoplastic material, optionally a fiber reinforcement material, and at least one additive. Thus, the method includes determining a resin system for each of the blade components based on a location and/or function of each blade component in the rotor blade. In addition, the method includes forming each of the blade components of the rotor blade from one of the plurality of resin systems and securing each of the blade components together to form the modular rotor blade.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10527023
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame or tray of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: January 7, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10519927
    Abstract: The present disclosure is directed to a shear web for a rotor blade of a wind turbine and a method of manufacturing and assembling same. The rotor blade generally includes an upper shell member having an upper spar cap configured on an internal surface thereof and a lower shell member having a lower spar cap configured on an internal surface thereof. Further, the shear web extends between the spar caps along a longitudinal length of the blade. In addition, the shear web includes first and second outer pultruded layers at least partially encompassing a core material, wherein end portions of the first and second outer pultruded layers form compressed flanges at opposing ends of the shear web.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: December 31, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso
  • Patent number: 10487796
    Abstract: The present disclosure is directed to methods for attaching a plurality of surface features to a rotor blade of a wind turbine. Such methods may include direct molding of the surface features to the rotor blade, bonding arrays of connected components to the rotor blade and subsequently removing connections between components, as well as using a flexible template with or without a tinted adhesive.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: November 26, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Murray Fisher, Madireddi Vasu Datta, Drew Adam Wetzel
  • Patent number: 10473086
    Abstract: A wind turbine rotor blade may generally include a blade root, a blade tip opposite the blade root and a body shell extending between the blade root and the blade tip. The body shell may include a pressure side and a suction side extending between a leading edge and a trailing edge and may define an outer shell surface. The rotor blade may also include a leading edge cap coupled to the body shell at the leading edge. The leading edge cap may be formed from a fiber-reinforced composite including an inner surface extending directly adjacent to the body shell along a portion of the outer shell surface and an outer surface opposite the inner surface. The fiber-reinforced composite may include a plurality of fibers surrounded by a thermoplastic resin material, with the thermoplastic resin material extending throughout the fiber reinforced composite from the inner surface to the outer surface.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: November 12, 2019
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin, Christopher Daniel Caruso
  • Patent number: 10443579
    Abstract: The present disclosure is directed to tip extensions for wind turbine rotor blades and methods of installing same. The method includes removing a removable blade tip of a lightning protection system from the rotor blade so as to expose a down conductor of the lightning protection system. The method also includes securing a conductive extension to the down conductor. Moreover, the method includes sliding the first end of the tip extension over the conductive extension so as to overlap the rotor blade at the tip end. In addition, the method includes securing the removable blade tip to the conductive extension at the second end of the tip extension. Further, the method includes securing the tip extension to the rotor blade.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: October 15, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Richard Hardison, Jamie T. Livingston
  • Publication number: 20190293049
    Abstract: Methods for joining a first blade component and a second blade component of a rotor blade together includes printing and depositing, via a computer numeric control (CNC) device, at least one three-dimensional (3-D) grid structure at a first joint area of the rotor blade. The first joint area contains the first blade component interfacing with the second blade component. The method also includes providing an adhesive at the first joint area to at least partially fill the grid structure. Further, the method includes securing the first blade component and the second blade component together at the first joint area via the adhesive.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: David Roberts, Nicholas K. Althoff, Michael Wenani Nielsen, James Robert Tobin, Andrew McCalip
  • Publication number: 20190291365
    Abstract: Methods for manufacturing a wind turbine rotor blade having a flatback airfoil configuration along at least a portion of a span of the rotor blade include providing a shell mold of the rotor blade. The method also includes laying up an outer skin layer of the rotor blade into the shell mold. Further, the method includes placing at least one pre-fabricated corner of the flatback airfoil configuration into the shell mold. The pre-fabricated corner(s) has a pointed edge. The method also includes infusing the outer skin layer with the pre-fabricated corner(s) to form the flatback airfoil configuration.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: David Roberts, Nicholas K. Althoff, Michael Wenani Nielsen, James Robert Tobin
  • Publication number: 20190293048
    Abstract: A method for assembling a shear web assembly of a wind turbine includes providing at least one spar cap. The method also includes forming a spar connecting member of a thermoplastic material via additive manufacturing. Further, the method includes securing the spar connecting member to the spar cap. Moreover, the method includes providing a shear web, forming a web connecting member of a thermoplastic material via additive manufacturing, and securing the web connecting member at a first end of the shear web. In addition, the method includes interconnecting the web connecting member and the spar connecting member at a joint. Thus, the method further includes heating the joint to secure the web connecting member and the spar connecting member together.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: David Roberts, Nicholas K. Althoff, Michael Wenani Nielsen, James Robert Tobin
  • Patent number: 10400745
    Abstract: A rotor blade for a wind turbine may generally include a first blade component formed from a first fiber-reinforced composite including a first thermoplastic resin material and a second blade component configured to be coupled to the first blade component at a joint interface. The second blade component may be formed from a second fiber-reinforced composite including a second thermoplastic resin material. The second fiber-reinforced composite may include a low fiber region and a high fiber region, with the low fiber region having a fiber-weight fraction that is less than a fiber-weight fraction of the high fiber region. In addition, the first thermoplastic resin material of the first fiber-reinforced composite may be welded to the second thermoplastic resin material contained within the low fiber region of the second thermoplastic composite to form a welded joint at the joint interface between the first blade component and the second blade component.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 3, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Publication number: 20190176445
    Abstract: In one aspect, a method for manufacturing a spar cap for a wind turbine rotor blade may generally include stacking a plurality of plates together to form a plate assembly, wherein each of the plates is formed from a fiber-reinforced composite including a plurality of fibers surrounded by a thermoplastic resin material. The method may also include positioning the plate assembly relative to a mold defining a mold surface, wherein the mold surface is shaped so as to correspond to at least one blade parameter of the wind turbine rotor blade. In addition, the method may include applying pressure to the plate assembly via the mold such that at least a portion of the plate assembly conforms to the shape of the mold surface.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Publication number: 20190153996
    Abstract: A rotor blade segment of a wind turbine includes a seamless leading edge surface. A method of manufacturing a rotor blade segment of a wind turbine, the rotor blade segment having a seamless leading edge surface, includes forming an outer skin of the rotor blade segment. The outer skin defines a continuous outer surface. The continuous outer surface includes a pressure side surface extending between a pressure side aft edge and a pressure side forward edge, a suction side surface extending between a suction side forward edge and a suction side aft edge, and the seamless leading edge surface extends between the pressure side forward edge and the suction side forward edge. After folding the outer skin, the pressure side surface is positioned opposite the suction side surface and the pressure side aft edge is proximate the suction side aft edge.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Stephen Bertram Johnson