Patents by Inventor Robert Tobin

Robert Tobin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190153994
    Abstract: A method for manufacturing a rotor blade panel of a wind turbine includes placing one or more fiber-reinforced outer skins into a mold of the rotor blade panel. The method also includes printing and depositing, via a computer numeric control (CNC) device, a plurality of rib members that form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins. Further, the grid structure bonds to the one or more fiber-reinforced outer skins as the grid structure is deposited. Moreover, the method includes printing at least one additional feature into the grid structure.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Norman Arnold Turnquist, Stephen Bertram Johnson, Don Conrad Johnson, Thomas Merzhaeuser, Peggy Lynn Baehmann, Stefan Herr, Murray Fisher, Andrew McCalip, Alan M. Walker, Todd Anderson
  • Publication number: 20190152165
    Abstract: A method for manufacturing a rotor blade panel of a wind turbine includes placing a mold of the rotor blade panel relative to a computer numeric control (CNC) device. The method also includes forming one or more fiber-reinforced outer skins in the mold. The method also includes printing and depositing, via the CNC device, printing and depositing, via the CNC device, a plurality of rib members that intersect to form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins before the one or more fiber-reinforced outer skins have cooled from forming. Further, the grid structure bonds to the fiber-reinforced outer skin(s) as the structure is deposited. In addition, the plurality of rib members include, at least, a first rib member extending in a first direction and a second rib member extending in a different, second direction. Moreover, the first rib member has a varying height along a length thereof.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Thomas Merzhaeuser, Todd Anderson
  • Publication number: 20190152128
    Abstract: The present disclosure is directed to a system for vacuum forming a component. The system includes a base and a plurality of mold segments positioned on the base. The plurality of mold segments are removably coupled together to define a mold cavity configured for forming the component. The base and one or more of the plurality of the mold segments collectively define a corresponding vacuum chamber of a plurality of vacuum chambers of the system. At least one of vacuum chambers is fluidly isolated from the other vacuum chambers. One or more of the plurality of the mold segments further define a plurality of vacuum passages fluidly coupling the mold cavity and the corresponding vacuum chamber.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventor: James Robert Tobin
  • Publication number: 20190152126
    Abstract: The present disclosure is directed to a mold assembly for vacuum forming a component. The mold assembly includes plurality of support plates and a plurality of mold plates removably coupled to the plurality of support plates. The plurality of mold plates is stacked and removably coupled together to form a mold configured for forming the component. Each mold plate including a first surface partially defining a top surface of the mold, a second surface spaced apart from the first surface, a third surface extending from the first surface to the second surface, and a fourth surface spaced apart from the third surface and extending from the first surface to the second surface.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Boobalan Ayyasamy
  • Publication number: 20190152168
    Abstract: The present disclosure is directed to an apparatus for manufacturing a composite component. The apparatus includes a mold onto which the composite component is formed. The mold is disposed within a grid defined by a first axis and a second axis. The apparatus further includes a first frame assembly disposed above the mold, and a plurality of machine heads coupled to the first frame assembly within the grid in an adjacent arrangement along the first axis. At least one of the mold or the plurality of machine heads is moveable along the first axis, the second axis, or both. At least one of the machine heads of the plurality of machine heads is moveable independently of one another along a third axis.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Stephen Bertram Johnson
  • Publication number: 20190152127
    Abstract: The present disclosure is directed to a method for creating a vacuum forming mold assembly. The method includes forming a plurality of support plates. Each support plate includes a surface defining a shape corresponding to a cross-section of at least a portion of the mold cavity. The method also includes removably coupling a mold body to the plurality of support plates to form the mold assembly. The mold body conforms to the shape of the surface of each support plate after being removably coupled to the plurality of support plates such that the mold body defines at least a portion of a mold cavity of the mold assembly. The mold body defines at least one of one or more vacuum manifolds or one or more fluid passages.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Boobalan Ayyasamy, Andrew McCalip
  • Publication number: 20190152160
    Abstract: The present disclosure is directed to an apparatus and method for manufacturing a composite component. The apparatus includes a mold onto which the composite component is formed. The mold is disposed within a grid defined by a first axis and a second axis. The apparatus further includes a first frame assembly disposed above the mold and a plurality of machine heads coupled to the first frame assembly within the grid in an adjacent arrangement along the first axis. At least one of the mold or the plurality of machine heads is moveable along the first axis, the second axis, or both. At least one of the machine heads of the plurality of machine heads is moveable independently of one another along a third axis. A second frame assembly is moveable above the mold along the first axis, the second axis, or both. The second frame assembly includes a holding device. The holding device affixes to and releases from an outer skin to place and displace the outer skin at the mold.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Stephen Bertram Johnson
  • Publication number: 20190153993
    Abstract: Rotor blade panels, along with methods of their formation, are provided. The rotor blade panel may include one or more fiber-reinforced outer skins having an inner surface; and, a plurality of reinforcement structures on the inner surface of the one or more fiber-reinforced outer skins, where the reinforcement structure bonds to the one or more fiber-reinforced outer skins as the reinforcement structure is being deposited. The reinforcement structure includes, at least, a first composition and a second composition, with the first composition being different than the second composition.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Stephen Bertram Johnson, Todd Alan Anderson, Krishnan Balaji Parthasarathy Thattai
  • Publication number: 20190153995
    Abstract: A method for manufacturing an outer skin of a rotor blade includes forming an outer skin layer of the outer skin from a first combination of at least one of one or more resins or fiber materials. The method also includes forming an inner skin layer of the outer skin from a second combination of at least one of one or more resins or fiber materials. More specifically, the first and second combinations are different. Further, the method includes arranging the outer and inner skin layers together in a stacked configuration. In addition, the method includes joining the outer and inner skin layers together to form the outer skin.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: James Robert Tobin, Thomas Merzhaeuser, Peggy Lynn Baehmann
  • Patent number: 10253752
    Abstract: A rotor blade for a wind turbine may generally include a first blade component formed from a first fiber-reinforced composite including a first thermoplastic resin material and a second blade component configured to be coupled to the first blade component at a joint interface. The second blade component may be formed from a second fiber-reinforced composite including a second thermoplastic resin material, wherein the second thermoplastic resin material differs from the first thermoplastic resin material. The rotor blade may also include an additional layer(s) of thermoplastic resin material positioned on or integrated into the second fiber-reinforced composite at the joint interface that differs from the second thermoplastic resin material. Moreover, the first thermoplastic resin material of the first fiber-reinforced composite may be welded to the additional layer(s) of the thermoplastic resin material to form a welded joint at the joint interface between the first and second blade components.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20190084676
    Abstract: A method for providing visual identification of a flow field across one or more wind turbines includes releasing at least one tracer material from at least one predetermined location of the wind turbine. The method also includes synchronizing the releasing of the tracer material with at least one of one or more operating parameters or one or more wind parameters of the wind turbine. Further, the method includes monitoring, via one or more sensors, a resultant flow pattern of the tracer material from one or more uptower locations.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Benjamin Patrick Hallissy, James Robert Tobin, Stefan Herr, Megan Wilson, Andreas Herrig, Matthew Rece
  • Patent number: 10213994
    Abstract: In one aspect, a method for manufacturing a spar cap for a wind turbine rotor blade may generally include stacking a plurality of plates together to form a plate assembly, wherein each of the plates is formed from a fiber-reinforced composite including a plurality of fibers surrounded by a thermoplastic resin material. The method may also include positioning the plate assembly relative to a mold defining a mold surface, wherein the mold surface is shaped so as to correspond to at least one blade parameter of the wind turbine rotor blade. In addition, the method may include applying pressure to the plate assembly via the mold such that at least a portion of the plate assembly conforms to the shape of the mold surface.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Patent number: 10197041
    Abstract: Methods for joining surface features to wind turbine rotor blades are provided. A method includes providing the surface feature after forming of the rotor blade. The surface feature includes a thermoplastic resin. The formed rotor blade includes a plurality of blade components joined together to form an exterior surface defining a pressure side, a suction side, a leading edge, and a trailing edge each extending between a tip and a root. The formed rotor blade further includes a thermoplastic resin. The method further includes positioning the surface feature adjacent the exterior surface, and welding the thermoplastic resin of the surface feature and the thermoplastic resin of the formed rotor blade together.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: February 5, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20190024631
    Abstract: A rotor blade assembly for a wind turbine includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge each extending in a generally span-wise direction between an inboard region and an outboard region. The inboard region includes a blade root that is typically characterized by a rounded trailing edge. Further, the rotor blade assembly further includes at least one airflow separation element mounted to either or both of the pressure or suction sides of the rotor blade within the inboard region and adjacent to the rounded trailing edge. In addition, an edge of the at least one airflow separation element is configured to provide a fixed airflow separation location in the inboard region during standard operation. The rotor blade assembly also includes at least one airflow modifying element configured with the trailing edge of the rotor blade.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: James Robert Tobin, Christian A. Carroll, Stefan Herr, Jonathan Glenn Luedke
  • Patent number: 10161381
    Abstract: Rotor blades and methods for joining blade components of rotor blades are provided. A method includes positioning an insert between and in contact with a first blade component and a second blade component. At least one of the first blade component or the second blade component includes a thermoplastic resin. The insert includes a thermoplastic resin and an energy absorptive pigment. The method further includes heating the thermoplastic resin of the at least one of the first blade component or the second blade component and the thermoplastic resin of the insert. The method further includes cooling the thermoplastic resin of the at least one of the first blade component or the second blade component and the thermoplastic resin of the insert. The heating step and the cooling step join the first blade component, the second blade component and the insert together.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: December 25, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Patent number: 10151297
    Abstract: Rotor blades and methods for joining shear clips in wind turbine rotor blades are provided. A method includes positioning the shear clip adjacent a shear web of the rotor blade, the shear clip including a thermoplastic resin, the shear web including a thermoplastic resin. The method further includes welding the thermoplastic resin of the shear clip and the thermoplastic resin of the shear web together. The method further includes positioning the shear clip adjacent a spar cap of the rotor blade, the spar cap including a thermoplastic resin. The method further includes welding the thermoplastic resin of the shear clip and the thermoplastic resin of the spar cap together. The method further includes joining the shear web and the spar cap together.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: December 11, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10138867
    Abstract: Methods for assembling rotor blades are provided. A method includes receiving a first portion of a rotor blade at an erection site. The method further includes receiving a second portion of the rotor blade at the erection site. The method further includes aligning the first portion and the second portion at the erection site, the first portion and the second portion supported on a fixture system when aligned. The method further includes connecting a blade component of the first portion and a blade component of the second portion together at the erection site.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10113531
    Abstract: The present disclosure is directed a method for repairing a rotor blade of a wind turbine. More specifically, in certain embodiments, the rotor blade may be constructed, at least in part, of a thermoplastic material reinforced with at least one fiber material. Thus, the method includes identifying at least one defect on the rotor blade. For example, in certain embodiments, the defect(s) as described herein may include a crack, creep, void, hole, distortion, deformation, scratch, or any other blade defect. The method also includes applying at least one of heat, pressure, and/or one or more chemicals to the defect(s) for a predetermined time period until the defect is repaired.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: October 30, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10100805
    Abstract: The present disclosure is directed to a tip extension assembly for a rotor blade of a wind turbine. The tip extension assembly includes a tip extension having a body with a pressure side surface and a suction side surface. Further, the tip extension is slidable onto a tip of the rotor blade so as to overlap the rotor blade adjacent the tip. In addition, the tip extension defines an extended trailing edge of the rotor blade. Moreover, an edge of the tip extension defines a step profile at a transition region between the tip extension and a trailing edge of the rotor blade. The tip extension assembly also includes at least one chord extension configured for attachment adjacent to the edge of the tip extension so as to minimize the step profile and associated noise caused thereby.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 16, 2018
    Assignee: General Electric Compant
    Inventors: James Robert Tobin, William Max Gobeli, Stefan Herr
  • Patent number: 10087912
    Abstract: Universal vortex generators for wind turbine rotor blades and methods of manufacturing same are disclosed. The vortex generator includes a base portion configured for attachment to at least one of a suction side surface or a pressure side surface of the rotor blade and at least one airflow modifying element extending from the base portion. In addition, the airflow modifying element includes one or more discontinuities configured therein so as to increase flexibility of the vortex generator.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 2, 2018
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Stefan Herr, Scott Gabell Riddell, Michael Christopher Booth