Patents by Inventor Roger Steadman

Roger Steadman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200113532
    Abstract: The present invention relates to a device (1) for determining positioning data for an X-ray image acquisition device (2) on a mobile patient support unit (3), the device comprising: a processing unit (10); and a status detector (11); wherein the status detector (11) is configured to acquire geometry data and type data of a mobile patient support unit (3) and of an X-ray image acquisition device (2) on the mobile patient support unit (3), and to transmit a status signal comprising the geometry data and the type data; wherein the processing unit (10) is configured to receive the status signal and data about region of interest position on the patient; and wherein, based on the status signal and the region of interest position, the processing unit (10) is configured to determine positioning and alignment data for an X-ray image acquisition device (2) on the mobile patient support unit (3), and to provide an image acquisition protocol for the X-ray image acquisition device (2).
    Type: Application
    Filed: May 18, 2018
    Publication date: April 16, 2020
    Inventors: GEREON VOGTMEIER, JENS VON BERG, RAVINDRA BHAT, ROGER STEADMAN BOOKER
  • Publication number: 20200064500
    Abstract: The invention relates to a pulse shaper (18). The pulse shaper (18) comprises an integrator (19) for generating a pulse having a peak amplitude indicative of the energy of a detected photon, a feedback resistor (22), switchable discharge circuitry (23) for discharging the integrator (19), and a peak detector (24) for detecting the peak of the pulse. The pulse shaper is adapted to start the discharge of the integrator by the switchable discharge circuitry based on the detection of the peak and to connect the feedback resistor in parallel to the integrator during a period of the pulse generation and to disconnect the feedback resistor during another period of the pulse generation. The pulse shaper can be such that the generation of the pulse is substantially unhindered by any noticeable concurrent discharging mechanism while, at the same time, the occurrence of energy pedestals can be efficiently avoided.
    Type: Application
    Filed: April 4, 2018
    Publication date: February 27, 2020
    Inventors: ROGER STEADMAN BOOKER, CHRISTOPH HERRMANN
  • Publication number: 20200064496
    Abstract: A detector includes a first detection layer (1141) and a second detector layer (1142). The first and second detection layers include a first and second scintillator (204, 7041) (216, 7042), a first and second active photosensing region (210, 7081) (220, 7082), a first portion (206, 7261) of a first substrate (208, 7061), and a second portion (218, 7262) of a second substrate (208, 7062). An imaging system (100) includes a radiation source (110), a radiation sensitive detector array (108) comprising a plurality of multi-layer detectors (112), and a reconstructor (118) configured to reconstruct an output of the detector array and produces an image. The detector array includes a first detection layer and a second detector layer with a first and second scintillator, a first and second active photosensing region, a first portion of a first substrate, and a second portion of a second substrate.
    Type: Application
    Filed: April 24, 2018
    Publication date: February 27, 2020
    Inventors: CHRISTOPH HERRMANN, ROGER STEADMAN BOOKER, JAKOB WIJNAND MULDER, MATTHIAS SIMON, JACQUES JULES VAN OEKEL
  • Patent number: 10557806
    Abstract: The present invention relates to a dual- or multi-source CT system and method. For suppressing or even completely eliminating the negative effects of cross-scatter, the proposed CT system comprises two x-ray sources (10, 11), two detectors (13, 14), two read-out units (15, 16), a control unit (17) and a reconstruction unit (19). Further, a scatter correction unit (18) is provided or the read-out units (15, 16) are configured to generate scatter-corrected read-out signals from the detected radiation, wherein a scatter-corrected read-out signal is generated from the radiation detected by a detector during a single projection interval (I) including multiple repetitions of three phases, in which the sources are alternately switched on and off and in which the read-out units alternately register primary radiation or cross-scatter radiation.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: February 11, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Ewald Roessl
  • Patent number: 10539688
    Abstract: In a conventional phase-contrast X-ray imaging system, a source grating G0 generates an array of partially coherent line sources which illuminate an object and thereafter phase grating G1. The periodicity in the phase grating is self-imaged at certain instances further away from the X-ray source and sampled by a mechanically movable third absorptive analyzer grating G2 before the demodulated fringe intensity is detected by a conventional X-5 ray detector. This application proposes to directly demodulate the fringe intensity using a structured scintillator having a plurality of slabs in alignment with sub-pixels of an optical detector layer, in combination with electronic signal read-out approaches. Therefore, a mechanically movable third absorptive analyzer grating G2 can be omitted from a phase-contrast X-ray imaging system.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 21, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Ewald Roessl, Walter Ruetten
  • Patent number: 10444381
    Abstract: The present invention relates to a radiation detector, in particular a direct conversion radiation detector. To provide for simple distribution of provided high voltage the radiation detector comprises a plurality of detector modules (10, 20) arranged adjacent to each other. Each detector module comprises a sensor layer (14, 24) for converting incident radiation (100) into electrical charges, a first electrode (15, 25) deposited on a first surface of the sensor layer facing the incident radiation (100), a second electrode (16, 26) deposited on a second surface of the sensor layer opposite the first surface, a readout electronics (12, 22) in electrical contact with the second electrode, and a carrier (13, 23) for carrying the sensor layer and the readout electronics.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: October 15, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Carolina Ribbing, Walter Ruetten, Gereon Vogtmeier
  • Publication number: 20190304616
    Abstract: The invention relates to an analyzing grid for phase contrast imaging and/or dark-field imaging, a detector arrangement for phase contrast imaging and/or dark-field imaging comprising such analyzing grid, an X-ray imaging system comprising such detector arrangement, a method for manufacturing such analyzing grid, a computer program element for controlling such analyzing grid or detector arrangement for performing such method and a computer readable medium having stored such computer program element. The analyzing grid comprises a number of X-ray converting gratings. The X-ray converting gratings are configured to convert incident X-ray radiation into light or charge. The number of X-ray converting gratings comprises at least a first X-ray converting grating and a second X-ray converting grating.
    Type: Application
    Filed: June 8, 2017
    Publication date: October 3, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: THOMAS KOEHLER, ROGER STEADMAN BOOKER, MATTHIAS SIMON, WALTER RUETTEN, HERFRIED KARL WIECZOREK
  • Publication number: 20190280036
    Abstract: The present invention relates to a detector module comprising a direct conversion crystal (10) for converting incident photons into electrical signals, said direct conversion crystal having a cathode metallization (100) deposited on a first surface and an anode metallization (101) deposited on a second surface, an integrated circuit (12) in electrical communication with said direct conversion crystal, said integrated circuit having a smaller width than said direct conversion crystal thus forming a recess (120) in width direction at a side surface of the integrated circuit, an interposer (11, 11a) arranged between said direct conversion crystal and said integrated circuit for providing electrical communication there between, wherein said interposer is made as separate element that is glued, soldered or bonded with the anode metallization (101) of said direct conversion crystal facing said integrated circuit, and a multi-lead flex cable (13, 13a, 13b, 13c, 13d) providing a plurality of output paths, said multi-
    Type: Application
    Filed: July 14, 2017
    Publication date: September 12, 2019
    Applicant: Koninklijke Phlips N.V.
    Inventors: Christoph HERRMANN, Roger STEADMAN BOOKER, Amir LIVNE
  • Patent number: 10365380
    Abstract: The invention relates a photon counting device and method for counting photon interactions in a piece of converter material and addressing the issue of charge sharing. The occurrence of a charge sharing event is already detected upon the onset of the pulse, taking into consideration an onset of a pulse in a neighboring pixel within a preferably very short coincidence window. According to the invention, it is detected whether a pulse is being processed and one or more neighboring pixels are scouted to decide whether a simultaneous interaction has been registered within a very short coincidence window.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 30, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Ewald Roessl
  • Publication number: 20190219713
    Abstract: In a conventional phase-contrast X-ray imaging system, a source grating G0 generates an array of partially coherent line sources which illuminate an object and thereafter phase grating G1. The periodicity in the phase grating is self-imaged at certain instances further away from the X-ray source and sampled by a mechanically movable third absorptive analyzer grating G2 before the demodulated fringe intensity is detected by a conventional X-5 ray detector. This application proposes to directly demodulate the fringe intensity using a structured scintillator having a plurality of slabs in alignment with sub-pixels of an optical detector layer, in combination with electronic signal read-out approaches. Therefore, a mechanically movable third absorptive analyzer grating G2 can be omitted from a phase-contrast X-ray imaging system.
    Type: Application
    Filed: August 3, 2018
    Publication date: July 18, 2019
    Inventors: ROGER STEADMAN BOOKER, EWALD ROESSL, WALTER RUETTEN
  • Publication number: 20190170880
    Abstract: The present invention relates to the correction of a detector signal d by superposing the detector signal with a correction signal. For providing a valid correction signal, a sampling pulse Ps is periodically or randomly provided. This sampling pulse serves as the initiator for sampling a process signal p of a process unit (14), which is configured to process the corrected detector signal. During the sampling of the process signal, the process signal is observed. In case a pulse at the process signal is detected, the sampling is assumed as not being suitable to correct the detector signal, since the pulse affects the process signal. Otherwise, namely in case such a process signal pulse does not occur during the sampling period, the process signal is further observed during a validation period, which is subsequently arranged to the sampling period.
    Type: Application
    Filed: September 15, 2016
    Publication date: June 6, 2019
    Inventors: Roger STEADMAN BOOKER, Christoph HERRMANN, Amir LIVNE
  • Publication number: 20190154851
    Abstract: In the present invention a direct X-ray conversion layer comprises a material having a perovskite crystal structure. This is preferable since this enables constructing an X-ray detector with edge-on illuminated detector elements.
    Type: Application
    Filed: May 27, 2017
    Publication date: May 23, 2019
    Inventors: Herfried Karl WIECZOREK, Cornelis Reinder RONDA, Roger STEADMAN, Matthias SIMON
  • Publication number: 20190146098
    Abstract: The invention relates to a correction device (8) for a radiation detector (2) including detector elements each for detecting incident photons. The correction device (8) is configured to read detection signals representative of an incident photon flux detected by the detector elements for different incident photon fluxes, and an evaluation unit (11) configured to determine for each detector element a dead time of the detector element and a parameter representative of an effective area of the detector element on the basis of a collective evaluation of the detection signals of the respective detector element. Further, the correction device (8) is configured to determine for each detector element correction parameters to compensate for differences in the effective areas and in the dead times of the detector elements on the basis of the determined parameters representative of the effective area and the determined dead times of the detector elements.
    Type: Application
    Filed: June 7, 2017
    Publication date: May 16, 2019
    Inventors: Ewald ROESSL, Roger STEADMAN BOOKER
  • Patent number: 10288748
    Abstract: The present invention relates to a detection module (22) for the detection of ionizing radiation emitted by a radiation source (20) comprising a scintillator element (24) for emitting scintillation photons in response to incident ionizing radiation, a first photosensitive element (32a) optically coupled to the scintillator element (24) for capturing scintillation photons (30) and a flexible substrate (34) for supporting the first photosensitive element (32a). The present invention also relates to an imaging device (10) that comprises such a detection module (22).
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 14, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gereon Vogtmeier, Roger Steadman Booker
  • Patent number: 10267929
    Abstract: Method of pixel volume confinement in a crystal of an energy resolving radiation detector, preferably an X-ray detector, more preferably a Computed Tomography detector, the crystal having a cathode side and an anode side, comprising: a. Inducing a break line (501) in the crystal along a pixel virtual limits b. Passivating the break line.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 23, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Frank Verbakel
  • Patent number: 10267928
    Abstract: The present invention is directed towards a photon counting radiation detector (10) comprising an array of pixels (13) comprising a plurality of detection pixels (131) for detecting imaging information. At least one pixel of the array of pixels (132) is shielded from receiving radiation. A dark current is determined from the shielded pixel (132) and is used to compensate for dark current in the other, non-shielded pixels (131). Embodiments are directed to integrating pixel shielding within an Anti Scatter Grid or in a mask.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 23, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Ewald Roessl
  • Publication number: 20190025440
    Abstract: The invention relates a photon counting device and method for counting photon interactions in a piece of converter material and addressing the issue of charge sharing. The occurrence of a charge sharing event is already detected upon the onset of the pulse, taking into consideration an onset of a pulse in a neighboring pixel within a preferably very short coincidence window. According to the invention, it is detected whether a pulse is being processed and one or more neighboring pixels are scouted to decide whether a simultaneous interaction has been registered within a very short coincidence window.
    Type: Application
    Filed: July 29, 2016
    Publication date: January 24, 2019
    Inventors: Roger STEADMAN BOOKER, Ewald ROESSL
  • Publication number: 20180356541
    Abstract: The present invention relates to a radiation detector, in particular a direct conversion radiation detector. To provide for simple distribution of provided high voltage the radiation detector comprises a plurality of detector modules (10, 20) arranged adjacent to each other. Each detector module comprises a sensor layer (14, 24) for converting incident radiation (100) into electrical charges, a first electrode (15, 25) deposited on a first surface of the sensor layer facing the incident radiation (100), a second electrode (16, 26) deposited on a second surface of the sensor layer opposite the first surface, a readout electronics (12, 22) in electrical contact with the second electrode, and a carrier (13, 23) for carrying the sensor layer and the readout electronics.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 13, 2018
    Inventors: Roger STEADMAN BOOKER, Carolina RIBBING, Walter RUETTEN, Gereon VOGTMEIER
  • Publication number: 20180329086
    Abstract: The invention relates to a detection values determination system, especially for photon-counting CT scanners, comprising a detection pulse providing unit for providing detection pulses for an array of detection pixels 17, which is provided with an anti-charge-sharing grid 15 for suppressing charge sharing between different clusters 14 of the detection pixels, wherein the detection pulses are indicative of the energy of photons incident on the detection pixels. Charge-sharing-corrected detection values are determined based on the provided detection pulses, wherein for determining a charge-sharing-corrected detection value for a detection pixel of a cluster only detection pixels of the same cluster are considered. This allows for a relatively high detective quantum efficiency, wherein the technical efforts for providing the charge sharing correction can be relatively low.
    Type: Application
    Filed: November 20, 2016
    Publication date: November 15, 2018
    Inventors: Ewald ROESSL, Roger STEADMAN BOOKER
  • Publication number: 20180321395
    Abstract: The present invention is directed towards a photon counting radiation detector (10) comprising an array of pixels (13) comprising a plurality of detection pixels (131) for detecting imaging information. At least one pixel of the array of pixels (132) is shielded from receiving radiation. A dark current is determined from the shielded pixel (132) and is used to compensate for dark current in the other, non-shielded pixels (131). Embodiments are directed to integrating pixel shielding within an Anti Scatter Grid or in a mask.
    Type: Application
    Filed: November 23, 2016
    Publication date: November 8, 2018
    Inventors: Roger STEADMAN BOOKER, Ewald ROESSL