Patents by Inventor Rohit Pal

Rohit Pal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100090289
    Abstract: The disclosed subject matter relates to semiconductor transistor devices and associated fabrication techniques that can be utilized to form silicide contacts having an increased effective size, relative to conventional silicide contacts. A semiconductor device fabricated in accordance with the processes disclosed herein includes a layer of semiconductor material and a gate structure overlying the layer of semiconductor material. A channel region is formed in the layer of semiconductor material, the channel region underlying the gate structure. The semiconductor device also includes source and drain regions in the layer of semiconductor material, wherein the channel region is located between the source and drain regions. Moreover, the semiconductor device includes facet-shaped silicide contact areas overlying the source and drain regions.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Frank Bin YANG, Rohit PAL, Michael J. HARGROVE
  • Publication number: 20100081245
    Abstract: Methods for forming a semiconductor device comprising a silicon-comprising substrate are provided. One exemplary method comprises depositing a polysilicon layer overlying the silicon-comprising substrate, amorphizing the polysilicon layer, etching the amorphized polysilicon layer to form a gate electrode, depositing a stress-inducing layer overlying the gate electrode, annealing the silicon-comprising substrate to recrystallize the gate electrode, removing the stress-inducing layer, etching recesses into the substrate using the gate electrode as an etch mask, and epitaxially growing impurity-doped, silicon-comprising regions in the recesses.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Frank Bin YANG, Rohit PAL, Michael J. HARGROVE
  • Patent number: 7682845
    Abstract: Methods are provided for calibrating a process for growing an epitaxial silicon-comprising film and for growing an epitaxial silicon-comprising film. One method comprises epitaxially growing a first silicon-comprising film on a first silicon substrate that has an adjacent non-crystalline-silicon structure that extends from said first silicon substrate. The step of epitaxially growing uses hydrochloric acid provided at a first hydrochloric acid flow rate for a first time period. A morphology of the first film relevant to the adjacent non-crystalline-silicon structure is analyzed and a thickness of the first film is measured. The first flow rate is adjusted to a second flow rate based on the morphology of the first film. The first time period is adjusted to a second time period based on the second flow rate and the thickness. A second silicon-comprising film on a second silicon substrate is epitaxially grown for the second time period using the second flow rate.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: March 23, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Rohit Pal, Alok Vaid, Kevin Lensing
  • Publication number: 20100059852
    Abstract: A method of fabricating a semiconductor device structure is provided. The method begins by providing a substrate having a layer of semiconductor material, a pad oxide layer overlying the layer of semiconductor material, and a pad nitride layer overlying the pad oxide layer. The method proceeds by selectively removing a portion of the pad nitride layer, a portion of the pad oxide layer, and a portion of the layer of semiconductor material to form an isolation trench. Then, the isolation trench is filled with a lower layer of isolation material, a layer of etch stop material, and an upper layer of isolation material, such that the layer of etch stop material is located between the lower layer of isolation material and the upper layer of isolation material. The layer of etch stop material protects the underlying isolation material during subsequent fabrication steps.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, David BROWN, Scott LUNING
  • Publication number: 20100055394
    Abstract: A microactuator may be configured by activating a source of electromagnetic radiation to heat and melt a selected set of phase-change plugs embedded in a substrate of the microactuator, pressurizing a common pressure chamber adjacent to each of the plugs to deform the melted plugs, and deactivating the source of electromagnetic radiation to cool and solidify the melted plugs.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 4, 2010
    Applicant: The Regents Of The University Of Michigan
    Inventors: Zhishan Hua, Erdogan Gulari, Mark A. Burns, Rohit Pal, Onnop Srivannavit
  • Patent number: 7670934
    Abstract: Methods of fabricating a semiconductor device on and in a semiconductor substrate having a first region and a second region are provided. In accordance with an exemplary embodiment of the invention, a method comprises forming a first gate stack overlying the first region and a second gate stack overlying the second region, etching into the substrate first recesses and second recesses, the first recesses aligned at least to the first gate stack in the first region, and the second recesses aligned at least to the second gate stack in the second region, epitaxially growing a first stress-inducing monocrystalline material in the first and second recesses, removing the first stress-inducing monocrystalline material from the first recesses, and epitaxially growing a second stress-inducing monocrystalline material in the first recesses, wherein the second stress-inducing monocrystalline material has a composition different from the first stress-inducing monocrystalline material.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: March 2, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Rohit Pal, Frank Bin Yang
  • Publication number: 20100012975
    Abstract: Semiconductor transistor devices and related fabrication methods are provided. An exemplary transistor device includes a layer of semiconductor material having a channel region defined therein and a gate structure overlying the channel region. Recesses are formed in the layer of semiconductor material adjacent to the channel region, such that the recesses extend asymmetrically toward the channel region. The transistor device also includes stress-inducing semiconductor material formed in the recesses. The asymmetric profile of the stress-inducing semiconductor material enhances carrier mobility in a manner that does not exacerbate the short channel effect.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 21, 2010
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Rohit PAL, Frank Bin YANG, Michael J. HARGROVE
  • Publication number: 20100012988
    Abstract: Semiconductor devices and methods for fabricating semiconductor devices are provided. One exemplary method comprises providing a silicon-comprising substrate having a first surface, etching a recess into the first surface, the recess having a side surface and a bottom surface, implanting carbon ions into the side surface and the bottom surface, and forming an impurity-doped, silicon-comprising region overlying the side surface and the bottom surface.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 21, 2010
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Frank Bin YANG, Michael J. HARGROVE, Rohit PAL
  • Patent number: 7632727
    Abstract: A method of fabricating a semiconductor transistor device is provided. The fabrication method begins by forming a gate structure overlying a layer of semiconductor material, such as silicon. Then, spacers are formed about the sidewalls of the gate structure. Next, ions of an amorphizing species are implanted into the semiconductor material at a tilted angle toward the gate structure. The gate structure and the spacers are used as an ion implantation mask during this step. The ions form amorphized regions in the semiconductor material. Thereafter, the amorphized regions are selectively removed, resulting in corresponding recesses in the semiconductor material. In addition, the recesses are filled with stress inducing semiconductor material, and fabrication of the semiconductor transistor device is completed.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: December 15, 2009
    Assignee: GlobalFoundries Inc.
    Inventors: Rohit Pal, Frank Bin Yang, Michael Hargrove
  • Publication number: 20090280579
    Abstract: A method that includes forming a gate of a semiconductor device on a substrate and forming a recess for an embedded silicon-straining material in source and drain regions for the gate. In this method, a proximity value, which is defined as a distance between the gate and a closest edge of the recess, is controlled by controlling formation of an oxide layer provided beneath the gate. The method can also include feedforward control of process steps in the formation of the recess based upon values measured during the formation of the recess. The method can also apply feedback control to adjust a subsequent recess formation process performed on a subsequent semiconductor device based on the comparison between a measured proximity value and a target proximity value to decrease a difference between a proximity value of the subsequent semiconductor device and the target proximity value.
    Type: Application
    Filed: May 12, 2008
    Publication date: November 12, 2009
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Rohit Pal, David E. Brown, Alok Vaid, Kevin Lensing
  • Publication number: 20090280627
    Abstract: A method of fabricating a semiconductor transistor device is provided. The fabrication method begins by forming a gate structure overlying a layer of semiconductor material, such as silicon. Then, spacers are formed about the sidewalls of the gate structure. Next, ions of an amorphizing species are implanted into the semiconductor material at a tilted angle toward the gate structure. The gate structure and the spacers are used as an ion implantation mask during this step. The ions form amorphized regions in the semiconductor material. Thereafter, the amorphized regions are selectively removed, resulting in corresponding recesses in the semiconductor material. In addition, the recesses are filled with stress inducing semiconductor material, and fabrication of the semiconductor transistor device is completed.
    Type: Application
    Filed: May 12, 2008
    Publication date: November 12, 2009
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit Pal, Frank Bin Yang, Michael Hargrove
  • Publication number: 20090256201
    Abstract: A metal oxide semiconductor transistor device having a reduced gate height is provided. One embodiment of the device includes a substrate having a layer of semiconductor material, a gate structure overlying the layer of semiconductor material, and source/drain recesses formed in the semiconductor material adjacent to the gate structure, such that remaining semiconductor material is located below the source/drain recesses. The device also includes shallow source/drain implant regions formed in the remaining semiconductor material, and epitaxially grown, in situ doped, semiconductor material in the source/drain recesses.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Frank Bin YANG, Rohit PAL, Scott LUNING
  • Publication number: 20090228132
    Abstract: A method includes receiving a performance distribution for a plurality of devices to be fabricated in a semiconductor process flow. A performance target for a particular device is specified based on the performance distribution. A stressed material is formed in a recess adjacent a gate electrode of a transistor in the particular device in accordance with at least one operating recipe. The recess is spaced from the gate electrode by a gate proximity distance. A target value for the gate proximity distance is determined based on the performance target. At least one parameter of the operating recipe is determined based on the target value for the gate proximity distance.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Inventors: Kevin R. Lensing, Alok Vaid, Rohit Pal
  • Publication number: 20090176356
    Abstract: Methods for fabricating semiconductor devices using thermal gradient-inducing films are provided. One method comprises providing a substrate having a first region and a second region and forming a film overlying the second region and exposing the first region. The substrate is subjected to a thermal process wherein the film induces a predetermined thermal gradient between the first region and the second region.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 9, 2009
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, Jon KLUTH, David BROWN
  • Publication number: 20090170223
    Abstract: Methods are provided for calibrating a process for growing an epitaxial silicon-comprising film and for growing an epitaxial silicon-comprising film. One method comprises epitaxially growing a first silicon-comprising film on a first silicon substrate that has an adjacent non-crystalline-silicon structure that extends from said first silicon substrate. The step of epitaxially growing uses hydrochloric acid provided at a first hydrochloric acid flow rate for a first time period. A morphology of the first film relevant to the adjacent non-crystalline-silicon structure is analyzed and a thickness of the first film is measured. The first flow rate is adjusted to a second flow rate based on the morphology of the first film. The first time period is adjusted to a second time period based on the second flow rate and the thickness. A second silicon-comprising film on a second silicon substrate is epitaxially grown for the second time period using the second flow rate.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, Alok VAID, Kevin LENSING
  • Patent number: 7534689
    Abstract: A stress enhanced MOS transistor and methods for its fabrication are provided. In one embodiment the method comprises forming a gate electrode overlying and defining a channel region in a monocrystalline semiconductor substrate. A trench having a side surface facing the channel region is etched into the monocrystalline semiconductor substrate adjacent the channel region. The trench is filled with a second monocrystalline semiconductor material having a first concentration of a substitutional atom and with a third monocrystalline semiconductor material having a second concentration of the substitutional atom. The second monocrystalline semiconductor material is epitaxially grown to have a wall thickness along the side surface sufficient to exert a greater stress on the channel region than the stress that would be exerted by a monocrystalline semiconductor material having the second concentration if the trench was filled by the third monocrystalline material alone.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: May 19, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rohit Pal, Igor Peidous, David Brown
  • Publication number: 20080248598
    Abstract: A method includes illuminating at least a portion of a first grid including a first plurality of stressed material regions formed at least partially in a semiconducting material. Light reflected from the illuminated portion of the first grid is measured to generate a first reflection profile. A characteristic of the first plurality of stressed material regions is determined based on the first reflection profile. A test structure includes a first plurality of stressed material regions recessed with respect to a surface of a semiconductor layer and defining a first grid. A first plurality of exposed portions of the semiconductor layer is disposed between each of the first plurality of stressed material regions.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Rohit Pal, Alok Vaid
  • Publication number: 20080237811
    Abstract: A method for capturing process history includes performing at least a first process for forming features on a semiconducting substrate. A first cap is formed over a first region of the semiconducting substrate after performing the first process. At least a second process is performed for forming the features in a second region other than the first region while leaving the first cap in place to thereby prevent the features in the first region covered by the first cap from being exposed to the second process. A first characteristic of a first feature is measured in the first region, and a second characteristic of a second feature in the second region is measured. A wafer includes a first partially completed feature disposed in a first region. A first cap is formed above the first partially completed feature. A second partially completed feature is disposed in a second region of the wafer different than the first region.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Rohit Pal, David F. Brown
  • Publication number: 20080220579
    Abstract: According to a method for fabricating a stress enhanced MOS device having a channel region at a surface of a semiconductor substrate, first and second trenches are etched into the semiconductor substrate, the first trench having a first side surface, and the second trench having a second side surface. The first and second side surfaces are formed astride the channel region. The first and second side surfaces are then oxidized in a controlled oxidizing environment to thereby grow an oxide region. The oxide region is then removed, thereby repositioning the first and second side surfaces closer to the channel region. With the first and second side surfaces repositioned, the first and second trenches are filled with SiGe.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 11, 2008
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, David BROWN, Scott LUNING
  • Publication number: 20080142835
    Abstract: A stress enhanced MOS transistor and methods for its fabrication are provided. A semiconductor-on-insulator structure is provided which includes a semiconductor layer having a first surface. A strain-inducing epitaxial layer is blanket deposited over the first surface, and can then be used to create a source region and a drain region which overlie the first surface.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Igor Peidous, Rohit Pal