Patents by Inventor Roland Rupp

Roland Rupp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10833218
    Abstract: A semiconductor ingot is sliced to obtain a semiconductor slice with a front side surface and a rear side surface parallel to the front side surface. A passivation layer is formed directly on at least one of the front side surface and the rear side surface. A barrier layer including least one of silicon carbide, a ternary nitride, and a ternary carbide is formed on the rear side surface.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 10, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Hans-Joachim Schulze
  • Publication number: 20200343085
    Abstract: A method includes producing a bulk substrate and beveling an edge of the bulk substrate using an electrical discharge machining (EDM) process and/or an electrochemical discharge machining (ECDM) process.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 29, 2020
    Inventors: Nirdesh Ojha, Roland Rupp, Francisco Javier Santos Rodriguez
  • Patent number: 10784145
    Abstract: A wafer composite is provided which includes an auxiliary substrate, a donor substrate and a sacrificial layer formed between the auxiliary substrate and the donor substrate. Functional elements of the semiconductor component are formed in a component layer, including at least one partial layer of the donor substrate. The auxiliary substrate is then separated from the component layer by heat input into the sacrificial layer.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Publication number: 20200286730
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Iris MODER, Bernhard GOLLER, Tobias Franz Wolfgang HOECHBAUER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ, Hans-Joachim SCHULZE
  • Patent number: 10763151
    Abstract: A wafer carrier comprises a first foil, a second foil, and a chamber between the first and the second foil. The first foil has a perforation and is used for carrying the wafer. The first and the second foil are connected to each other so as to form the chamber. The chamber is configured to be evacuated to form a vacuum in the chamber, the vacuum causes an underpressure at the perforation, the underpressure forms a carrying force to the wafer to be carried.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 1, 2020
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Ronny Kern, Josef Unterweger
  • Patent number: 10734484
    Abstract: A semiconductor device includes trench gate structures that extend from a first surface into a silicon carbide portion. A shielding region between a drift zone and the trench gate structures along a vertical direction orthogonal to the first surface forms an auxiliary pn junction with the drift zone. Channel regions and the trench gate structures are successively arranged along a first horizontal direction. The channel regions are arranged between a source region and a current spread region along a second horizontal direction orthogonal to the first horizontal direction. Portions of mesa sections between neighboring trench gate structures fully deplete at a gate voltage within an absolute maximum rating of the semiconductor device.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Anton Mauder, Roland Rupp, Oana Julia Spulber
  • Patent number: 10734514
    Abstract: A semiconductor device includes trench structures that extend from a first surface into a semiconductor body. The trench structures include a gate structure and a contact structure that extends through the gate structure, respectively. Transistor mesas are between the trench structures. Each transistor mesa includes a body zone forming a first pn junction with a drift structure and a second pn junction with a source zone. Diode regions directly adjoin one of the contact structures form a third pn junction with the drift structure, respectively.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Romain Esteve, Dethard Peters, Roland Rupp, Ralf Siemieniec
  • Patent number: 10699934
    Abstract: According to various embodiments, a substrate carrier may include: a substrate-supporting region for supporting a substrate; wherein a first portion of the substrate-supporting region including a pore network of at least partially interconnected pores; wherein a second portion of the substrate-supporting region surrounds the first portion and includes a sealing member for providing a contact sealing; at least one evacuation port for creating a vacuum in the pore network, such that a substrate received over the substrate-supporting region is adhered by suction; and at least one valve configured to control a connection between the pore network and the at least one evacuation port, such that a vacuum can be maintained in the pore network; wherein the pore network includes a first pore characteristic in a first region and a second pore characteristic in a second region different from the first pore characteristic.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Ronny Kern, Josef Unterweger
  • Patent number: 10700168
    Abstract: A wide band gap semiconductor device includes a first doping region of a first conductivity type and a second doping region of a second conductivity type. A drift portion of the second doping region has a first average net doping concentration lower than 1e17 cm?3. A highly doped portion of the second doping region has a second average net doping concentration higher than 5e18 cm?3. A compensation portion of the second doping region located between the drift and highly doped portions extends from a first area with a net doping concentration higher than 1e16 cm?3 and lower than 1e17 cm?3 to a second area with a net doping concentration higher than 5e18 cm?3. A maximum gradient of the net doping concentration within at least a part of the compensation portion extending from the second area towards the first area for at least 100 nm is lower than 5e22 cm?4.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventors: Josef Lutz, Roland Rupp, Hans-Joachim Schulze
  • Publication number: 20200198963
    Abstract: In various embodiments, a method of processing a monocrystalline substrate is provided. The method may include severing the substrate along a main processing side into at least two monocrystalline substrate segments, and forming a micromechanical structure comprising at least one monocrystalline substrate segment of the at least two substrate segments.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 25, 2020
    Inventors: Andre BROCKMEIER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ
  • Publication number: 20200176568
    Abstract: A semiconductor device includes a silicon carbide semiconductor body including a source region of a first conductivity type, a body region of a second conductivity type, shielding regions of the second conductivity type and compensation regions of the second conductivity type. Trench structures extend from a first surface into the silicon carbide semiconductor body along a vertical direction. Each of the trench structures includes an auxiliary electrode at a bottom of the trench structure and a gate electrode between the auxiliary electrode and the first surface. The auxiliary electrode is electrically insulated from the gate electrode. The auxiliary electrode of each of the trench structures is adjoined by at least one of the shielding regions at the bottom of the trench structure. Each of the shielding regions is adjoined by at least one of the compensation regions at the bottom of the shielding region.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 4, 2020
    Inventors: Andreas Meiser, Caspar Leendertz, Anton Mauder, Roland Rupp
  • Patent number: 10672875
    Abstract: A method for forming a silicon carbide semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate and forming a silicon carbide layer of the silicon carbide semiconductor device on the at least one graphene layer. At least one of forming the silicon carbide layer and forming the at least one graphene layer includes: heating the semiconductor substrate an inert gas atmosphere until a predefined temperature is reached.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Guenther Ruhl, Hans-Joachim Schulze
  • Publication number: 20200152743
    Abstract: A method of manufacturing a silicon carbide device includes: forming a trench in a process surface of a silicon carbide substrate that has a body layer forming second pn junctions with a drift layer structure, wherein the body layer is between the process surface and the drift layer structure and wherein the trench exposes the drift layer structure; implanting dopants through a bottom of the trench to form a shielding region that forms a first pn junction with the drift layer structure; forming dielectric spacers on sidewalls of the trench; and forming a buried portion of an auxiliary electrode in a bottom section of the trench, the buried portion adjoining the shielding region.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventors: Andreas Meiser, Caspar Leendertz, Anton Mauder, Roland Rupp
  • Patent number: 10651072
    Abstract: This application relates to a method for producing a semiconductor component, in which a wafer composite is provided. The wafer composite includes a donor substrate, an auxiliary substrate and a separation layer arranged between the auxiliary substrate and the donor substrate. The separation layer has a support structure and sacrificial material, which is formed laterally between elements of the support structure. The auxiliary substrate is separated from the donor substrate. The separation includes a selective removal of the sacrificial material in relation to the support structure.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 12, 2020
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Patent number: 10643897
    Abstract: Methods of forming a semiconductor device are provided. A method includes introducing impurities into a part of a semiconductor substrate at a first surface of the semiconductor substrate by ion implantation, the impurities being configured to absorb electromagnetic radiation of an energy smaller than a bandgap energy of the semiconductor substrate. The method further includes forming a semiconductor layer on the first surface of the semiconductor substrate. The method further includes irradiating the semiconductor substrate with electromagnetic radiation configured to be absorbed by the impurities and configured to generate local damage of a crystal lattice of the semiconductor substrate. The method further includes separating the semiconductor layer and the semiconductor substrate by thermal processing of the semiconductor substrate and the semiconductor layer, where the thermal processing is configured to cause crack formation along the local damage of the crystal lattice by thermo-mechanical stress.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: May 5, 2020
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 10615040
    Abstract: A method of processing a power semiconductor device includes: providing a semiconductor body of the power semiconductor device; coupling a mask to the semiconductor body; and subjecting the semiconductor body to an ion implantation such that implantation ions traverse the mask prior to entering the semiconductor body.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Alexander Breymesser, Andre Brockmeier, Ronny Kern, Francisco Javier Santos Rodriguez, Carsten von Koblinski
  • Patent number: 10611630
    Abstract: In various embodiments, a method of processing a monocrystalline substrate is provided. The method may include severing the substrate along a main processing side into at least two monocrystalline substrate segments, and forming a micromechanical structure comprising at least one monocrystalline substrate segment of the at least two substrate segments.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: April 7, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Andre Brockmeier, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20200098868
    Abstract: An embodiment of a semiconductor device includes a trench gate structure extending from a first surface into a silicon carbide semiconductor body along a vertical direction. A body region of a first conductivity type adjoins a sidewall of the trench gate structure and includes a first body sub-region adjoining the sidewall and a second body sub-region adjoining the sidewall. At least one profile of dopants of the first conductivity type along the vertical direction includes a first doping peak in the first body sub-region and a second doping peak in the second body sub-region. A doping concentration of the first doping peak is larger than a doping concentration of the second doping peak.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Inventors: Reinhard Ploss, Thomas Aichinger, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 10586851
    Abstract: A semiconductor device includes a trench structure extending from a first surface into a silicon carbide semiconductor body. The trench structure includes an auxiliary electrode at a bottom of the trench structure and a gate electrode arranged between the auxiliary electrode and the first surface. A shielding region adjoins the auxiliary electrode at the bottom of the trench structure and forms a first pn junction with a drift structure. A corresponding method of manufacturing the semiconductor device is also described.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 10, 2020
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Caspar Leendertz, Anton Mauder, Roland Rupp
  • Patent number: 10541301
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body including a semiconductor body material having a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon. At least one first semiconductor region doped with dopants of a first conductivity type is produced in the semiconductor body, including by applying a first implantation of first implantation ions. At least one second semiconductor region adjacent to the at least one first semiconductor region and doped with dopants of a second conductivity type complementary to the first conductivity type is produced in the semiconductor body, including by applying a second implantation of second implantation ions.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Wolfgang Jantscher, Roland Rupp, Werner Schustereder, Hans Weber