Patents by Inventor Ron A. Balczewski

Ron A. Balczewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210251488
    Abstract: Embodiments of the present disclosure relate to implantable medical devices (IMDs). In an exemplary embodiment, an IMD comprises a power source and a housing enclosing the power source. The housing comprises a first side and a second side extending along a longitudinal axis between a first end and a second end, wherein the first side is opposite the second side and the first end is opposite the second end, and wherein a first distance between the first and second ends is greater than a second distance the first and second sides. The IMD further comprises a printed circuit board arranged on the first side of the base and conductively coupled to the power source. The IMD also comprises a non-conductive enclosure arranged over the printed circuit board and hermetically sealing the printed circuit board, the non-conductive enclosure comprising an outer surface.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 19, 2021
    Inventors: James Michael English, Jean M. Bobgan, Keith R. Maile, Ron A. Balczewski
  • Publication number: 20210252293
    Abstract: Embodiments of the present disclosure relate to implantable medical devices (IMDs). In an exemplary embodiment, an IMD comprises: a housing including a plurality of feedthroughs extending through the housing, a first electrode, a second electrode, and a biocompatible circuit board disposed around an outer surface of the housing. The biocompatible circuit board comprising a plurality of traces, wherein a first trace of the plurality of traces is coupled to the first electrode and a first feedthrough of the plurality of feedthroughs, and a second trace of the plurality of traces is coupled to the first electrode and a second feedthrough of the plurality of feedthroughs.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: James Michael English, Jean M. Bobgan, Keith R. Maile, Ron A. Balczewski
  • Publication number: 20210252295
    Abstract: Embodiments of the present disclosure relate to implantable medical devices. According to an exemplary embodiment, a method for forming an electrode on an implantable medical device (IMD), comprises forming a nonconductive body comprising a well having a bottom surface and at least one side surface extending from the bottom surface. The method further comprises forming a conduit through the bottom surface and inserting the nonconductive body into an opening in an external surface of the IMD. The method also comprises depositing conductive material into the well and coupling the conductive material to a circuit of the IMD via the conduit through the bottom surface of the well.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: James M. English, Jean M. Bobgan, Keith R. Maile, Ron A. Balczewski
  • Publication number: 20200360703
    Abstract: A medical device includes: a case at least a portion of which functions as a first electrode; a second electrode disposed in a header coupled to the case; a core assembly, the core assembly including operational circuitry enclosed within a core assembly housing, wherein the case includes the core assembly housing; and a battery assembly, the battery assembly including a battery enclosed within a battery housing, where the case further comprises the battery housing; where the operational circuitry is configured to drive a regulated voltage onto the case.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventors: Ron A. Balczewski, William J. Linder, Dan C. Goldman, Nicholas J. Slessman, Aleksandra Kharam
  • Publication number: 20200338344
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Publication number: 20200330758
    Abstract: Embodiments herein relate to a method for treating a cancerous tumor located within a subject. The method can include applying one or more electric fields at or near a site of the cancerous tumor, where the cancerous tumor can include a cancerous cell population. The one or more applied electric fields are effective to delay mitosis and cause mitotic synchronization within a proportion of the cancerous cell population. The method can include removing the one or more electric fields to allow mitosis to proceed within the cancerous cell population. The method can include administering a chemotherapeutic agent to the subject after the one or more electric fields have been removed. Other embodiments are also included herein.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, Ron A. Balczewski, Aleksandra Kharam
  • Publication number: 20200330757
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, including an electric field generating circuit configured to generate one or more electric fields at or near a site of the cancerous tumor and control circuitry in communication with the electric field generating circuit. The medical device includes one or more supply wires in electrical communication with the electric field generating circuit and one or more supply electrodes. The supply electrodes are configured to deliver an electric field at or near the site of the cancerous tumor. The medical device can include one or more sensing wires in electrical communication with the control circuitry and one or more sensing electrodes. The sensing electrodes can be configured to measure an impedance of the cancerous tumor at at least two different electric field strengths. Other embodiments are also included herein.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Sarah Melissa Gruba, Tucker James Nelson, Aleksandra Kharam
  • Publication number: 20200330756
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 10799187
    Abstract: Systems and methods for monitoring patients with respiratory diseases are described. A system may include a sensor circuit to sense a respiration signal and at least one hemodynamic signal. The system may detect a specified respiratory phase from the respiration signal, and generate from the hemodynamic signal one or more signal metrics that are correlative to at least one of a systolic blood pressure, a blood volume, or a cardiac dimension. The system may detect a restrictive or obstructive respiratory condition when the hemodynamic signal metric indicates hemodynamic deterioration during a specified respiratory phase. The system may additionally classify the detected restrictive or obstructive respiratory condition into one of two or more categories, and deliver a therapy based on the detection or the classification.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 13, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Michael J. Kane, Bin Mi, Ron A. Balczewski, Keith R. Maile
  • Patent number: 10709892
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: July 14, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Publication number: 20200129088
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for supporting components of an implantable medical device. The apparatuses, systems, and methods may include a first electrode and a second electrode and a scaffold assembly configured to support the first electrode and the second electrode.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 30, 2020
    Inventors: Ron A. Balczewski, Jean M. Bobgan, Aleksandra Kharam, David P. Stieper, Scott R. Vanderlinde
  • Patent number: 10632313
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. A device may include a leadless cardiac pacemaker (LCP) that includes a power supply, a pair of electrodes, and a controller operably connected to the electrodes and the power supply. The controller may identify a capture threshold by setting a pace amplitude at a power supply voltage of the power supply and deliver pacing stimulation pulses with different pulse widths to identify the capture threshold. The LCP may then deliver pacing stimulation pulses based, at least in part, on a pulse amplitude and pulse width associated with the capture threshold, and also adding a capture margin. In some cases, the pulse amplitude may change over time and the LCP may adjust a pulse width along a strength-duration curve to account for the pulse amplitude change and maintain a capture threshold and capture margin.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 28, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Lance Eric Juffer, William J. Linder, Ron A. Balczewski, Keith R. Maile
  • Patent number: 10561330
    Abstract: An implantable medical device (IMD) may include a sensor for providing a sensor output signal and a sense channel configured to receive the sensor output signal from the sensor. The sense channel may be configured to process the sensor output signal and output a sense channel output signal. The sense channel may have an adjustable performance level, wherein for a higher performance level the sense channel consumes more power than for a lower performance level. A controller may be configured to adjust the performance level of the sense channel to achieve more performance and more power consumption when a higher degree of sense channel performance is desired and to achieve less performance and less power consumption when a higher degree of performance is not desired.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 18, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Aleksandra Kharam, Ron A. Balczewski, Paul Huelskamp, Lance Eric Juffer, Keith R. Maile
  • Patent number: 10493290
    Abstract: A medical system for providing a defibrillation therapy to a patient includes a cardiac monitoring device (CMD) configured to sense and record physiological data indicative of the patient's cardiac function. The CMD includes a communication component. The system also includes an external therapy device configured to deliver defibrillation therapy, and configured to be positioned external to and supported by the patient. The external therapy device includes an external therapy device communication component. The CMD communication component and the external therapy device communication component are configured to operatively couple the CMD and the external therapy device to one another, so as to work as a system to detect and treat fibrillation.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 3, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jacob M. Ludwig, Ron A. Balczewski, Todd W. Grotbeck, Keith R. Maile, Moira B. Sweeney
  • Publication number: 20190290916
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Publication number: 20190282167
    Abstract: A medical device configured to be adhesively coupled to an external surface of a subject, and to facilitate physiological monitoring of the subject, includes: a first portion having a housing that at least partially encloses an interior chamber and has a grip portion that has a peanut-like shape; and a second portion including a flexible patch configured to facilitate operably coupling the first portion to the subject. The flexible patch includes third and fourth sensor connections configured to operably interface with the first and second sensor connections, respectively; first and second sensing elements; and a flexible circuit assembly configured to electrically couple the third sensor connection to the first sensing element and the fourth sensor connection to the second sensing element. An adhesive assembly is configured to couple the first portion to the second portion, and includes conductive adhesive portions.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 10350419
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 16, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Publication number: 20190201701
    Abstract: A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Ron A. Balczewski, William J. Linder, Keith R. Maile
  • Publication number: 20180207426
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Application
    Filed: March 26, 2018
    Publication date: July 26, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Publication number: 20180185655
    Abstract: This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 5, 2018
    Inventors: Ron A. Balczewski, James E. Blood, William J. Linder, Jacob M. Ludwig, Keith R. Maile