Patents by Inventor Ronald S. Cok

Ronald S. Cok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495560
    Abstract: A component includes a plurality of electrical connections on a process side opposed to a back side of the component. Each electrical connection includes an electrically conductive multi-layer connection post protruding from the process side. A printed structure includes a destination substrate and one or more components. The destination substrate has two or more electrical contacts and each connection post is in contact with, extends into, or extends through an electrical contact of the destination substrate to electrically connect the electrical contacts to the connection posts. The connection posts or electrical contacts are deformed. Two or more connection posts can be electrically connected to a common electrical contact.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 8, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Carl Prevatte, Christopher Bower, Ronald S. Cok, Matthew Meitl
  • Patent number: 11495172
    Abstract: A flat-panel display comprises a display substrate, an array of pixels distributed in rows and columns over the display substrate, the array having a column-control side, and column controller disposed on the column-control side of the array providing column data to the array of pixels through column-data lines. In some embodiments, rows of pixels in the array of pixels form row groups and each column of pixels in a row group receives column data through a separate column-data line. In some embodiments, each pixel in each column of pixels in the array of pixels is serially connected and each pixel in the array of pixels comprises a token-passing circuit for passing a token through the serially connected column of pixels.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 8, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Christopher Andrew Bower, Ronald S. Cok
  • Patent number: 11488518
    Abstract: A flat-panel display comprises a display substrate, an array of pixels distributed in rows and columns over the display substrate, the array having a column-control side, and column controller disposed on the column-control side of the array providing column data to the array of pixels through column-data lines. In some embodiments, rows of pixels in the array of pixels form row groups and each column of pixels in a row group receives column data through a separate column-data line. In some embodiments, each pixel in each column of pixels in the array of pixels is serially connected and each pixel in the array of pixels comprises a token-passing circuit for passing a token through the serially connected column of pixels.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 1, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Ronald S. Cok, Christopher Andrew Bower
  • Patent number: 11489037
    Abstract: A tiled display structure comprises a screen support having a screen emitter side and an opposing screen back side. A black matrix comprises a patterned layer of black-matrix material disposed on the screen back side, the pattern defining pixel openings that are substantially devoid of black-matrix material. An array of tiles comprises tiles each having a tile substrate and a plurality of pixels disposed in or on the tile substrate. Each pixel comprises one or more light emitters. The one or more light emitters are each disposed to emit light through a pixel opening in the black matrix. A substantially transparent adhesive layer adheres the array of tiles to the black-matrix material.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: November 1, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Christopher Andrew Bower, Matthew Alexander Meitl, Erich Radauscher, Ronald S. Cok
  • Patent number: 11490519
    Abstract: A stacked electronic component comprises a stack of three or more print layers. Each print layer has an area less than any print layers beneath the print layer in the stack. Each print layer comprises a dielectric layer and a functional layer disposed on the dielectric layer. The functional layer comprises an exposed conductive portion that is not covered with a dielectric layer of any of the print layers and each exposed conductive portion is nonoverlapping with any other exposed conductive portion. A patterned electrode layer is coated on at least a portion of the stack and defines one or more electrodes. Each electrode of the one or more electrodes in electrical contact with an exclusive subset of the exposed conductive portions. The functional layers can be passive conductors forming capacitors, resistors, inductors, or antennas, or active layers forming electronic circuits.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: November 1, 2022
    Assignee: X-Celeprint Limited
    Inventor: Ronald S. Cok
  • Patent number: 11488943
    Abstract: An example of a pixel module comprises a module substrate having light emitters disposed on a light-emitter surface and a controller disposed on a controller surface opposed to the light-emitter surface. At least one module electrode is electrically connected to the controller and at least one module electrode is electrically connected to each light emitter. An example of a pixel-module wafer comprises a module source wafer comprising sacrificial portions and module anchors, each sacrificial portion laterally separated from an adjacent sacrificial portion by a module anchor and a pixel module disposed entirely over each sacrificial portion. At least one module tether physically connects each of the pixel modules to at least one of the module anchors. An example of a pixel-module display comprises a display substrate, pixel modules disposed on the display substrate and display electrodes disposed on the display substrate, each display electrode electrically connected to a module electrode.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 1, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Christopher Andrew Bower, Matthew Alexander Meitl, Ronald S. Cok, Salvatore Bonafede, Brook Raymond, Andrew Tyler Pearson, Erik Paul Vick
  • Patent number: 11482979
    Abstract: A method of making a micro-module structure comprises providing a substrate, the substrate having a substrate surface and comprising a substrate post protruding from the substrate surface. A component is disposed on the substrate post, the component having a component top side and a component bottom side opposite the component top side, the component bottom side disposed on the substrate post. The component extends over at least one edge of the substrate post. One or more component electrodes are disposed on the component.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: October 25, 2022
    Assignee: X Display Company Technology Limited
    Inventors: António José Marques Trindade, Raja Fazan Gul, Robert R. Rotzoll, Alexandre Chikhaoui, David Gomez, Ronald S. Cok
  • Publication number: 20220328339
    Abstract: An example of a method of making a heterogeneous semiconductor structure, includes providing a first substrate including a first material; providing a second substrate including a printable processable coupon, wherein the coupon includes a second material different from the first material; and printing the coupon to the first substrate. The method can includes processing the coupon on the first substrate to form an integrated circuit. An example of a heterogeneous structure includes a substrate including a first material and one or more non-native coupons disposed on the substrate, the coupon including a second material different from the first material. The second material can be or comprise an epitaxial material, such as a compound semiconductor material. The first material can be or comprise an elemental semiconductor, such as silicon.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 13, 2022
    Inventors: Ronald S. Cok, Ruggero Loi
  • Publication number: 20220320061
    Abstract: An example of a pixel module comprises a module substrate having light emitters disposed on a light-emitter surface and a controller disposed on a controller surface opposed to the light-emitter surface. At least one module electrode is electrically connected to the controller and at least one module electrode is electrically connected to each light emitter. An example of a pixel-module wafer comprises a module source wafer comprising sacrificial portions and module anchors, each sacrificial portion laterally separated from an adjacent sacrificial portion by a module anchor and a pixel module disposed entirely over each sacrificial portion. At least one module tether physically connects each of the pixel modules to at least one of the module anchors. An example of a pixel-module display comprises a display substrate, pixel modules disposed on the display substrate and display electrodes disposed on the display substrate, each display electrode electrically connected to a module electrode.
    Type: Application
    Filed: June 22, 2022
    Publication date: October 6, 2022
    Inventors: Christopher Andrew Bower, Matthew Alexander Meitl, Ronald S. Cok, Salvatore Bonafede, Brook Raymond, Andrew Tyler Pearson, Erik Paul Vick
  • Publication number: 20220301486
    Abstract: A pulse-density-modulation display and image capture system comprises a display comprising a plurality of pixels. Each pixel comprises a light emitter that controllably emits light at a constant current for a variable amount of time and a control circuit connected to the light emitter to control the light emitter to emit light in response to an input signal specifying the desired luminance of the light emitter. The control circuit converts the input signal to a non-contiguous pulse-density-modulation signal and controls the light emitter to emit light in response to the non-contiguous pulse-density-modulation signal with a temporally variable constant-current control signal. Each pixel emits light responsive to a display timing signal. The pulse-density-modulation display and image capture system also comprises a sampling camera that records the pixels and is responsive to a camera timing signal different from the display timing signal.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Inventors: Matthew Alexander Meitl, Christopher Andrew Bower, Ronald S. Cok, Robert R. Rotzoll, Lee B. Baker
  • Publication number: 20220285309
    Abstract: A variable-stiffness module comprises a rigid structure (10) having a first stiffness, an intermediate substrate (20) having a second stiffness less than the first stiffness, and a flexible substrate (30) having a third stiffness less than the second stiffness. The rigid structure (10) is disposed on the intermediate substrate (20) and the intermediate substrate (20) is disposed on the flexible substrate (30). A conductor (40) is disposed partially on the intermediate substrate (21) and partially on the flexible substrate (30) and connected to the rigid structure (10). The conductor (40) extends from the rigid structure (10) to the intermediate substrate (21) to the flexible substrate (30). In some embodiments, a variable-stiffness module comprises any combination of multiple rigid structures, multiple intermediate substrates, and multiple conductors.
    Type: Application
    Filed: August 24, 2020
    Publication date: September 8, 2022
    Inventors: Ronald S. Cok, Gabriele Roithmeier, Christian Schulz, Michael Scharfenberg
  • Publication number: 20220285291
    Abstract: A micro-component module comprises a module substrate, a component disposed on the module substrate, and at least a portion of a module tether in contact with the module substrate. The module substrate can be flexible or can comprise an organic material, or both. The module tether can be more brittle and less flexible than the module substrate. The component can be less flexible than the module substrate and can comprise at least a portion of a component tether. An encapsulation layer can be disposed over the component and module substrate. The component can be disposed in a mechanically neutral stress plane of the micro-component module. A micro-component module system can comprise a micro-component module disposed on a flexible system substrate, for example by micro-transfer printing. A micro-component module can comprise an internal module cavity in the module substrate with internal module tethers physically connecting the module substrate to internal anchors.
    Type: Application
    Filed: January 31, 2022
    Publication date: September 8, 2022
    Inventors: António José Marques Trindade, Ronald S. Cok, Pierluigi Rubino
  • Patent number: 11430375
    Abstract: A pulse-density-modulation display and image capture system comprises a display comprising a plurality of pixels. Each pixel comprises a light emitter that controllably emits light at a constant current for a variable amount of time and a control circuit connected to the light emitter to control the light emitter to emit light in response to an input signal specifying the desired luminance of the light emitter. The control circuit converts the input signal to a non-contiguous pulse-density-modulation signal and controls the light emitter to emit light in response to the non-contiguous pulse-density-modulation signal with a temporally variable constant-current control signal. Each pixel emits light responsive to a display timing signal. The pulse-density-modulation display and image capture system also comprises a sampling camera that records the pixels and is responsive to a camera timing signal different from the display timing signal.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 30, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Matthew Alexander Meitl, Christopher Andrew Bower, Ronald S. Cok, Robert R. Rotzoll, Lee B. Baker
  • Patent number: 11430774
    Abstract: A bezel-free display comprises a display substrate and an array of pixels. Pixel rows and pixel columns are separated by row and column distances and connected by row and column lines, respectively. A column driver is electrically connected to each of the column lines and a row driver is electrically connected to each of the row lines. Row-connection lines are electrically connected to each of the row lines or row drivers. In certain embodiments, each pixel in the column of pixels closest to a display substrate edge is spatially separated from the edge by a distance less than or equal to the column distance. At least one row driver is spatially separated from the corresponding row by a distance less than the column or row distance, at least one column driver is spatially separated from the corresponding column by a distance less than the column or row distance, or both.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: August 30, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Ronald S. Cok, Brook Raymond
  • Publication number: 20220238790
    Abstract: A hybrid document includes a flexible document having visible markings. One or more light-controlling elements and a controller are embedded in or on the flexible document. The controller is electrically connected to the one or more light-controlling elements to control the one or more light-controlling elements. A power input connection is electrically connected to the controller, or one or more light-controlling elements, or both. A power source can be connected to the power input connection, for example a piezoelectric or photovoltaic power source. In response to applied power, the controller causes the one or more light-controlling elements to emit light. In some embodiments, the controller includes a memory and a value can be stored in the memory and displayed by the light-controlling element(s). In some embodiments, the value can be assigned or varied by a hybrid currency teller machine.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Robert R. Rotzoll, Ronald S. Cok
  • Patent number: 11398399
    Abstract: A component source wafer comprises printable components having adhesive disposed on a backside of the printable components. A wafer substrate comprises a sacrificial layer having recessed portions and anchors. A component is disposed entirely over each recessed portion. A tether physically connects each component to at least one of the anchors. A layer of adhesive is disposed on a side of the component adjacent to the recessed portion. Each component is suspended over the wafer substrate and the recessed portion defines a gap separating the component from the wafer substrate.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: July 26, 2022
    Assignee: X Display Company Technology Limited
    Inventors: António José Marques Trindade, Raja Fazan Gul, Ronald S. Cok
  • Publication number: 20220230582
    Abstract: A flat-panel display comprises a display substrate, an array of pixels distributed in rows and columns over the display substrate, the array having a column-control side, and column controller disposed on the column-control side of the array providing column data to the array of pixels through column-data lines. In some embodiments, rows of pixels in the array of pixels form row groups and each column of pixels in a row group receives column data through a separate column-data line. In some embodiments, each pixel in each column of pixels in the array of pixels is serially connected and each pixel in the array of pixels comprises a token-passing circuit for passing a token through the serially connected column of pixels.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Ronald S. Cok, Christopher Andrew Bower
  • Patent number: 11393730
    Abstract: A method of making a repaired electrical connection structure comprises providing a substrate having first and second contact pads electrically connected in parallel, providing first and second functionally identical components, disposing a first adhesive layer on the substrate, transferring the first component onto the first adhesive layer, electrically connecting the first component to the first contact pad, testing the first component to determine if the first component is a faulty component and, if the first component is a faulty component, disposing a second adhesive layer on the substrate and transferring the second component onto the second adhesive layer, and electrically connecting the second component to the second contact pad. The first and second adhesive layers can be unpatterned or patterned and the first and second components can be electrically connected to the first and second contact pads, respectively, with connection posts or photolithographically defined electrodes.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: July 19, 2022
    Assignee: X Display Company Technology Limited
    Inventors: Ronald S. Cok, Erich Radauscher, Salvatore Bonafede, Christopher Andrew Bower, Matthew Alexander Meitl, Carl Ray Prevatte, Jr., Brook Raymond
  • Publication number: 20220225508
    Abstract: A stacked electronic component comprises a stack of three or more print layers. Each print layer has an area less than any print layers beneath the print layer in the stack. Each print layer comprises a dielectric layer and a functional layer disposed on the dielectric layer. The functional layer comprises an exposed conductive portion that is not covered with a dielectric layer of any of the print layers and each exposed conductive portion is nonoverlapping with any other exposed conductive portion. A patterned electrode layer is coated on at least a portion of the stack and defines one or more electrodes. Each electrode of the one or more electrodes in electrical contact with an exclusive subset of the exposed conductive portions. The functional layers can be passive conductors forming capacitors, resistors, inductors, or antennas, or active layers forming electronic circuits.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 14, 2022
    Inventor: Ronald S. Cok
  • Patent number: 11387178
    Abstract: An example of a printable electronic component includes a component substrate having a connection post side and an opposing contact pad side. The component can include one or more non-planar, electrically conductive connection posts protruding from the connection post side of the component substrate. Each of the one or more connection posts can have a peak area smaller than a base area. The component can include one or more non-planar, electrically conductive exposed component contact pads disposed on (e.g., directly on, indirectly on, or in) the contact pad side of the component substrate. Multiple components can be stacked such that connection post(s) of one are in contact with non-planar contact(s) of one or more others.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: July 12, 2022
    Assignee: X-Celeprint Limited
    Inventors: Kevin G. Oswalt, Ronald S. Cok