Patents by Inventor Roy G. Gordon

Roy G. Gordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7557229
    Abstract: Metal films are deposited with uniform thickness and excellent step coverage. Copper metal films were deposited on heated substrates by the reaction of alternating doses of copper(I) N,N?-diisopropylacetamidinate vapor and hydrogen gas. Cobalt metal films were deposited on heated substrates by the reaction of alternating doses of cobalt(II) bis(N,N?-diisopropylacetamidinate) vapor and hydrogen gas. Nitrides and oxides of these metals can be formed by replacing the hydrogen with ammonia or water vapor, respectively. The films have very uniform thickness and excellent step coverage in narrow holes. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: July 7, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Booyong S. Lim
  • Patent number: 7507848
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: March 24, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Jill S. Becker, Dennis Hausmann, Seigi Suh
  • Publication number: 20080296537
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Application
    Filed: February 7, 2007
    Publication date: December 4, 2008
    Applicant: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Publication number: 20080254232
    Abstract: An interconnect structure for integrated circuits incorporates a layer of cobalt nitride that facilitates the nucleation, growth and adhesion of copper wires. The cobalt nitride may deposited on a refractory metal nitride or carbide layer, such as tungsten nitride or tantalum nitride, that serves as a diffusion barrier for copper and also increases the adhesion between the cobalt nitride and the underlying insulator. The cobalt nitride may be formed by chemical vapor deposition from a novel cobalt amidinate precursor. Copper layers deposited on the cobalt nitride show high electrical conductivity and can serve as seed layers for electrochemical deposition of copper conductors for microelectronics.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 16, 2008
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Roy G. GORDON, Hoon KIM, Harish BHANDARI
  • Publication number: 20080003359
    Abstract: Metal(IV) tetrakis(N,N?-dialkylamidinates) were synthesized and characterized. Exemplary metals include hafnium, zirconium, tantalum, niobium, tungsten, molybdenum, tin and uranium. These compounds are volatile, highly stable thermally, and suitable for vapor deposition of metals and their oxides, nitrides and other compounds.
    Type: Application
    Filed: October 17, 2006
    Publication date: January 3, 2008
    Inventors: Roy G. Gordon, Jean-Sebastien Lehn, Huazhi Li
  • Patent number: 6994800
    Abstract: Volatile liquid precursors are provided for use in the formation of alkali metal-containing materials. The compound includes an alkali metal and an amide ligand and is a liquid at a temperature of less than about 70° C.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 7, 2006
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Randy N. R. Broomhall-Dillard
  • Patent number: 6969539
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris-(ter-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. supplying the vapors in alternating pulse produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: November 29, 2005
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Jill Becker, Dennis Hausmann, Seigi Suh
  • Publication number: 20040043149
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris-(ter-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300 ° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250 ° C. supplying the vapors in alternating pulse produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Inventors: Roy G. Gordon, Jill Becker, Dennis Hausmann, Seigi Suh
  • Patent number: 6258157
    Abstract: A liquid precursor is provided for the formation of metal oxide films comprising a mixture of two or more types of beta-diketonate ligands bound to one or more metals. A metal beta-diketonate compound having at least two different beta-diketonate ligands provided. For example, a liquid mixture was formed of the mixed aluminum beta-diketonates derived from two or more of the ligands 2,6-dimethyl-3,5-heptanedione; 2,7-dimethyl-3,5-heptanedione; 2,6-dimethyl-3,5-octanedione; 2,2,6-trimethyl-3,5-heptanedione; 2,8-dimethyl-4,6-nonanedione; 2,7-dimethyl-4,6-nonanedione; 2,2,7-trimethyl-3,5-octanedione; and 2,2,6-trimethyl-3,5-octanedione. Films of metal oxides are deposited from vaporized precursor mixtures of metal beta-diketonates and, optionally, oxygen or other sources of oxygen. This process may be used to deposit high-purity, transparent metal oxide films on a substrate. The liquid mixtures may also be used for spray coating, spin coating and sol-gel deposition of materials.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: July 10, 2001
    Assignee: President and Fellows of Harvard College
    Inventor: Roy G. Gordon
  • Patent number: 6180190
    Abstract: An apparatus is used to turn liquids into vapors for use in chemical vapor deposition. It uses a high-frequency ultrasonic plate to break the liquid into tiny droplets and a gas-dynamic sorting tower to reprocess larger droplets into smaller ones before quickly vaporizing them. The method can vaporize liquids with high efficiency even if they have low vapor pressures and limited thermal stability. The vapor concentration can be set to a known and reproducible value by setting the pumping rate. The apparatus can rapidly start and stop the vapor flow. The pressure drop in the carrier gas is very small. Only a very small dead volume of liquid is contained in the apparatus at any given time, so little is wasted when the system is cleaned.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: January 30, 2001
    Assignee: President and Fellows of Harvard College
    Inventor: Roy G. Gordon
  • Patent number: 6071561
    Abstract: Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: June 6, 2000
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Keith Kramer, Haifan Liang
  • Patent number: 5980983
    Abstract: A liquid precursor is provided for the formation of metal oxide films comprising a mixture of two ro more types of beta-diketonate ligands bound to one or more metals. For example, a liquid mixture was formed of the mixed aluminum beta-diketonates derived from two or more of the ligands 2,6-dimethyl-3,5-heptanedione; 2,7-dimethyl-3,5-heptanedione; 2,6-dimethyl-3,5-octanedione; 2,2,6-trimethyl-3,5-heptanedione; 2,8-dimethyl-4,6-nonanedione; 2,7-dimethyl-4,6-nonanedione; 2,2,7-trimethyl-3,5-octanedione; and 2,2,6-trimethyl-3,5-octanedione. Films of metal oxides are deposited from vaporized precursor mixtures of metal beta-diketonates and, optionally, oxygen or other sources of oxygen. This process may be used to deposit high-purity, transparent metal oxide films on a substrate. The liquid mixtures may also be used for spray coating, spin coating and sol-gel deposition of materials.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: November 9, 1999
    Assignee: The President and Fellows of Harvard University
    Inventor: Roy G. Gordon
  • Patent number: 5656338
    Abstract: Chemical vapor deposition of titanium metal is accomplished by forming a liquid solution of titanium tetrabromide in bromine, vaporizing the solution and contacting the vapor mixture with a plasma in the vicinity of a substrate. These titanium films show good conformality, low electrical resistance and are suitable as contact and adhesion layers in semiconductor microelectronics. By mixing ammonia gas with the mixed vapors of titanium tetrabromide and bromine, films containing titanium nitride are deposited at about 400.degree. C. These titanium nitride films are suitable as diffusion barriers and adhesion layers in semiconductor devices.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 12, 1997
    Inventor: Roy G. Gordon
  • Patent number: 5631065
    Abstract: A durable energy-conserving window glass is produced with very low scattering of visible light. A typical structure consists of soda-lime glass coated successively with alumina, then fluorine-doped tin oxide and finally with bismuth silicate glass. The whole structure is heated so that the bismuth silicate glass softens and flows to form a smooth surface.
    Type: Grant
    Filed: April 8, 1991
    Date of Patent: May 20, 1997
    Inventor: Roy G. Gordon
  • Patent number: 5492725
    Abstract: Chemical vapor deposition (CVD) is accomplished by the reaction of vapors of certain novel compounds containing ligands derived from partially hydrogenated aromatic nitrogen-containing heterocyclic compounds. For example, tetrakis(1,4-dihydropyridinato)titanium reacts at 400.degree. C. to deposit films containing titanium metal. These films show good conformality, electrical conductivity and are suitable as a contact and adhesion layers in semiconductor microelectronics. Similar compounds containing 1,4-dihydropyridinato ligands can be used as CVD sources for a wide variety of elements, including metals, semiconductors and non-metals.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: February 20, 1996
    Inventor: Roy G. Gordon
  • Patent number: 5389401
    Abstract: Films of metal oxides are deposited from vaporized precursor compounds, such as metal alkoxides, by reaction with the vapor of a compound, such as cyclohexenone, that is derived formally from a stable aromatic compound by replacing one hydrogen with a ketone functional group (.dbd.O) and adding three hydrogen atoms to other atoms in the aromatic system. For example, the vapor of titanium (IV) isopropoxide reacts with the vapor of 2-cyclohexen-1-one to deposit titanium dioxide at 400.degree. C. The deposit is highly transparent and free of carbon impurity. This vapor mixture with added aluminum isopropoxide deposits a highly insulating film of aluminum-doped titanium dioxide.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: February 14, 1995
    Inventor: Roy G. Gordon
  • Patent number: 5227036
    Abstract: A method for electrochemically removing tin oxide from a coater surface. A tin oxide coater is placed in an electrolytic bath to function as the cathode of a pair of cell electrodes. The tin oxide is electrolytically removed by either reducing the tin oxide to tin metal and then dissolving the tin, or creating a bubble of hydrogen gas at the coater surface/tin oxide interface. Pressure of the hydrogen gas forces the tin oxide to break away from the coater at the coater surface/tin oxide interface.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: July 13, 1993
    Inventor: Roy G. Gordon
  • Patent number: 5202003
    Abstract: A method for the electrolytic removal of titanium nitride from a coater surface. The titanium nitride coater surface functions as an anode and another electrode functions as the cathode. The voltage applied across the electrodes removes the titanium nitride from the surface of the coater.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: April 13, 1993
    Inventor: Roy G. Gordon
  • Patent number: 5178911
    Abstract: A process for depositing a thin film of a main group metal nitride, e.g., AlN, GaN or Sn.sub.3 N.sub.4, is provided. The vapors of a main group metal amido compound are mixed with ammonia gas and allowed to react near a substrate heated to a temperature in the range of 100.degree. C. to 400.degree. C. resulting in deposition of a film on the substrate.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: January 12, 1993
    Assignee: The President and Fellows of Harvard College
    Inventors: Roy G. Gordon, David Hoffman, Umar Riaz
  • Patent number: 5167986
    Abstract: Transparent glass windows comprising thereon titanium silicide (TiSi.sub.2) as the principal solar screening layer for reducing transmission of near infrared and visible radiation. In some embodiments, a protective layer of silicon or metal oxide, about 300 angstroms thick, is placed thereover. The protective layer serves to protect the silicide from oxidation during high-temperature processing procedures and increases the abrasion-resistance of the window product. The particular importance of titanium silicide film is that it allows production of a window that is neutral in color when viewed in transmission as well as in reflection. Thus, one is able to provide a durable, pyrolytic, high-performance, color-neutral, solar-shielding window product.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: December 1, 1992
    Inventor: Roy G. Gordon