Patents by Inventor Ryo Oishi

Ryo Oishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109412
    Abstract: A driving assistance apparatus includes a parking lot staying determination section which determines whether or not a vehicle is present in a parking lot having a parking row including parking slots and/or parked vehicles located adjacent to each other, an erroneous operation determination section which determines whether or not an occupant has erroneously stepped on an acceleration operation element, and a control section which executes driving power reduction control upon determination that the vehicle is present in the parking lot and that the occupant has performed the erroneous operation. When the erroneous operation determination section determines that the occupant has performed the erroneous operation again before elapse of a predetermined threshold time after execution of the driving power reduction control, the control section executes the driving power reduction control again, irrespective of the result of the determination by the parking lot staying determination section.
    Type: Application
    Filed: September 6, 2023
    Publication date: April 4, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoya MATSUNAGA, Takuya Kaminade, Masaki Ikai, Ryo Ishii, Masashi Oishi
  • Publication number: 20240105668
    Abstract: There is provided a novel Al wiring material that achieves both of a suppression of chip damage and a thermal shock resistance. In aspect 1, the Al wiring material includes an Al core material and an Al coating layer formed on a surface of the Al core material, and satisfies 1.2?H1h/H1s where H1h is a Vickers hardness of the Al core material (Hv) and H1s is a Vickers hardness of the Al coating layer (Hv). In aspect 2, the Al wiring material includes an Al core material and an Al coating layer formed on a surface of the Al core material, and satisfies 1.2?H2h/H2s where H2s is a Vickers hardness of the Al core material (Hv) and H2h is a Vickers hardness of the Al coating layer (Hv).
    Type: Application
    Filed: January 31, 2022
    Publication date: March 28, 2024
    Inventors: Yuto KURIHARA, Daizo ODA, Motoki ETO, Ryo OISHI, Tetsuya OYAMADA, Tomohiro UNO
  • Publication number: 20240092346
    Abstract: Provided is a driving support device (1) including a control device which has an acceleration suppression function of suppressing acceleration of an own vehicle when the own vehicle is determined to be positioned in a parking area (PA) including a parking spot row (PSA) and an erroneous depression operation is determined to be executed on an accelerator pedal (AP). The control device predicts a trajectory (T) of the own vehicle in a case in which the own vehicle travels when a speed (vs) of the own vehicle is equal to or higher than a predetermined speed, and further predicts a time (?t) required for the own vehicle to reach a point at which the trajectory (T) and the parking spot row (PSA) intersect with each other. The control device determines that the own vehicle is positioned in the parking area (PA) when the predicted time (?t) is equal to or shorter than a predetermined time.
    Type: Application
    Filed: July 25, 2023
    Publication date: March 21, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryo ISHII, Takuya Kaminade, Naoya Matsunaga, Masashi Oishi, Masaki Ikai
  • Patent number: 11929343
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic % or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: March 12, 2024
    Assignee: NIPPON MICROMETAL CORPORATION
    Inventors: Daizo Oda, Motoki Eto, Takashi Yamada, Teruo Haibara, Ryo Oishi
  • Publication number: 20230387066
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of atomic % or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Daizo ODA, Motoki ETO, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI
  • Publication number: 20230335528
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and reduces a galvanic corrosion in a high-temperature environment to achieve a favorable bond reliability of the 2nd bonding part. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic % or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Daizo ODA, Motoki ETO, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI
  • Publication number: 20230302584
    Abstract: There is provided a novel Al wiring material that achieves a favorable high-temperature reliability as well as a favorable workability and bondability during installation and connection to a device. The Al wiring material contains Mg and Si so as to satisfy 0.05?x1a?2.5, 0.02?x1b?1, and 0.1?(x1a+x1b)?3 where x1a is a content of Mg [% by mass] and x1b is a content of Si [% by mass], and contains one or more selected from the group consisting of Sc, Er, Yb, Gd, Ce and Y so as to satisfy 0.001?x2?0.5 where x2 is a total content thereof [% by mass], with the balance comprising Al.
    Type: Application
    Filed: August 24, 2021
    Publication date: September 28, 2023
    Inventors: Tomohiro UNO, Tetsuya OYAMADA, Yuya SUTO, Daizo ODA, Yuto KURIHARA, Ryo OISHI
  • Publication number: 20230299037
    Abstract: There is provided a novel Al wiring material that suppresses an increase in cold strength and exhibits a favorable high-temperature reliability. The Al wiring material contains one or more selected from the group consisting of Er, Yb and Gd so as to satisfy 0.001?x1?0.6 where x1 is a total content thereof [% by mass], with the balance comprising Al.
    Type: Application
    Filed: August 24, 2021
    Publication date: September 21, 2023
    Inventors: Tomohiro UNO, Tetsuya OAMADA, Daizo ODA, Yuto KURIHARA, Ryo OISHI
  • Patent number: 11721660
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and reduces a galvanic corrosion in a high-temperature environment to achieve a favorable bond reliability of the 2nd bonding part. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic % or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: August 8, 2023
    Assignee: NIPPON MICROMETAL CORPORATION
    Inventors: Daizo Oda, Motoki Eto, Takashi Yamada, Teruo Haibara, Ryo Oishi
  • Publication number: 20230245995
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic% or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Application
    Filed: March 16, 2022
    Publication date: August 3, 2023
    Inventors: Daizo ODA, Motoki ETO, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI
  • Publication number: 20230215834
    Abstract: There is provided a novel Cu bonding wire that achieves a favorable FAB shape and reduces a galvanic corrosion in a high-temperature environment to achieve a favorable bond reliability of the 2nd bonding part. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic % or more formed on a surface of the core material. The bonding wire is characterized in that: in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 6, 2023
    Inventors: Daizo ODA, Motoki ETO, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI
  • Publication number: 20230154884
    Abstract: There is provided an Ag alloy bonding wire for semiconductor devices which exhibits a favorable bond reliability in a high-temperature environment even when using a mold resin of high S content and can suppress a chip damage at the time of ball bonding. The Ag alloy bonding wire is characterized by containing at least one element selected from the group consisting of Pd and Pt (hereinafter referred to as a “first element”) and at least one element selected from the group consisting of P, Cr, Zr and Mo (hereinafter referred to as a “second element”) so as to satisfy 0.05 ? ? ? ? ? x 1 ? ? ? ? ? 3.0 , ? ? and 15 ? ? ? x 2 ? ? ? 700 where x1 is a total concentration of the first element [at.%] and x2 is a total concentration of the second element [at. ppm], with the balance including Ag.
    Type: Application
    Filed: March 29, 2021
    Publication date: May 18, 2023
    Inventors: Daizo ODA, Takumi OOKABE, Motoki ETO, Noritoshi ARAKI, Ryo OISHI, Teruo HAIBARA, Tomohiro UNO, Tetsuya OYAMADA
  • Publication number: 20230013769
    Abstract: There is provided a copper bonding wire having an improved storage life in the atmosphere. There is specifically provided a copper bonding wire for semiconductor devices characterized in that a density of crystal grain boundary on a surface of the wire is 0.6 (?m/?m2) or more and 1.6 (?m/?m2) or less.
    Type: Application
    Filed: November 20, 2020
    Publication date: January 19, 2023
    Inventors: Ryo OISHI, Daizo ODA, Noritoshi ARAKI, Kota SHIMOMURA, Tomohiro UNO, Tetsuya OYAMADA
  • Publication number: 20220341004
    Abstract: There is provided an Al wiring material which suppresses a chip crack and achieves thermal shock resistance while suppressing lowering of a yield at the time of manufacture. The Al wiring material contains at least Sc and Zr so as to satisfy 0.01?x1?0.5 and 0.01?x2?0.3 where x1 is a content of Sc [% by weight] and x2 is a content of Zr [% by weight], with the balance comprising Al.
    Type: Application
    Filed: September 17, 2020
    Publication date: October 27, 2022
    Inventors: Yuto KURIHARA, Ryo OISHI, Motoki ETO, Daizo ODA, Tetsuya OYAMADA, Yuya SUTO, Tomohiro UNO
  • Patent number: 10737356
    Abstract: A bonding wire for a semiconductor device, characterized in that the bonding wire includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, the bonding wire contains an element that provides bonding reliability in a high-temperature environment, and a strength ratio defined by the following Equation (1) is 1.1 to 1.6: Strength ratio=ultimate strength/0.2% offset yield strength.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 11, 2020
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10610976
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 7, 2020
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Publication number: 20200013748
    Abstract: There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Tomohiro UNO
  • Patent number: 10525555
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: January 7, 2020
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10468370
    Abstract: There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: November 5, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Ryo Oishi, Tomohiro Uno
  • Patent number: 10414002
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: September 17, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno