Patents by Inventor Ryo Oishi

Ryo Oishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10137534
    Abstract: A bonding wire includes a Cu alloy core material, and a Pd coating layer formed on the Cu alloy core material. The bonding wire contains at least one element selected from Ni, Zn, Rh, In, Ir, and Pt. A concentration of the elements in total relative to the entire wire is 0.03% by mass or more and 2% by mass or less. When measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, a crystal orientation <100> angled at 15 degrees or less to a wire axis direction has a proportion of 50% or more among crystal orientations in the wire axis direction. An average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire is 0.9 ?m or more and 1.3 ?m or less.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 27, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10121764
    Abstract: The present invention provides a ball forming method for forming a ball portion at a tip of a bonding wire which includes a core material mainly composed of Cu, and a coating layer mainly composed of Pd and formed over a surface of the core material, wherein the ball portion is formed in non-oxidizing atmosphere gas including hydrocarbon which is gas at room temperature and atmospheric pressure, the method being capable of improving Pd coverage on a ball surface in forming a ball at a tip of the Pd-coated Cu bonding wire.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: November 6, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Noritoshi Araki, Takashi Yamada, Teruo Haibara, Ryo Oishi, Tomohiro Uno
  • Patent number: 10121758
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 6, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Daizo Oda, Motoki Eto, Kazuyuki Saito, Teruo Haibara, Ryo Oishi, Takashi Yamada, Tomohiro Uno
  • Patent number: 10032741
    Abstract: There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains In of 0.011 to 1.2% by mass and has the Pd coating layer of a thickness of 0.015 to 0.150 ?m. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material contains one or more elements of Pt, Pd, Rh and Ni in an amount, for each element, of 0.05 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 175° C. or more.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: July 24, 2018
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Daizo Oda, Motoki Eto, Takashi Yamada, Teruo Haibara, Ryo Oishi, Tomohiro Uno, Tetsuya Oyamada
  • Publication number: 20180133843
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20180130763
    Abstract: A bonding wire for a semiconductor device, characterized in that the bonding wire includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, the bonding wire contains an element that provides bonding reliability in a high-temperature environment, and a strength ratio defined by the following Equation (1) is 1.1 to 1.6: Strength ratio=ultimate strength/0.2% offset yield strength.
    Type: Application
    Filed: June 14, 2016
    Publication date: May 10, 2018
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20180122765
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Daizo ODA, Motoki ETO, Kazuyuki SAITO, Teruo HAIBARA, Ryo OISHI, Takashi YAMADA, Tomohiro UNO
  • Publication number: 20180096965
    Abstract: The present invention provides a ball forming method for forming a ball portion at a tip of a bonding wire which includes a core material mainly composed of Cu, and a coating layer mainly composed of Pd and formed over a surface of the core material, wherein the ball portion is formed in non-oxidizing atmosphere gas including hydrocarbon which is gas at room temperature and atmospheric pressure, the method being capable of improving Pd coverage on a ball surface in forming a ball at a tip of the Pd-coated Cu bonding wire.
    Type: Application
    Filed: April 14, 2016
    Publication date: April 5, 2018
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Noritoshi ARAKI, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI, Tomohiro UNO
  • Patent number: 9887172
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: February 6, 2018
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Daizo Oda, Motoki Eto, Kazuyuki Saito, Teruo Haibara, Ryo Oishi, Takashi Yamada, Tomohiro Uno
  • Publication number: 20170323864
    Abstract: There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains In of 0.011 to 1.2% by mass and has the Pd coating layer of a thickness of 0.015 to 0.150 ?m. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material contains one or more elements of Pt, Pd, Rh and Ni in an amount, for each element, of 0.05 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 175° C. or more.
    Type: Application
    Filed: June 5, 2015
    Publication date: November 9, 2017
    Inventors: Daizo ODA, Motoki ETO, Takashi YAMADA, Teruo HAIBARA, Ryo OISHI, Tomohiro UNO, Tetsuya OYAMADA
  • Patent number: 9773748
    Abstract: A bonding wire for a semiconductor device including a coating layer having Pd as a main component on the surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing a metallic element of Group 10 of the Periodic Table of Elements in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in 2nd bondability and excellent ball bondability in a high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at % to 75 at %.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 26, 2017
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Ryo Oishi, Tomohiro Uno
  • Publication number: 20170216974
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Application
    Filed: May 19, 2016
    Publication date: August 3, 2017
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD., NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20170200689
    Abstract: A bonding wire includes a Cu alloy core material, and a Pd coating layer formed on the Cu alloy core material. The bonding wire contains at least one element selected from Ni, Zn, Rh, In, Ir, and Pt. A concentration of the elements in total relative to the entire wire is 0.03% by mass or more and 2% by mass or less. When measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, a crystal orientation <100> angled at 15 degrees or less to a wire axis direction has a proportion of 50% or more among crystal orientations in the wire axis direction. An average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire is 0.9 ?m or more and 1.3 ?m or less.
    Type: Application
    Filed: July 22, 2015
    Publication date: July 13, 2017
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20170200690
    Abstract: There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition.
    Type: Application
    Filed: July 23, 2015
    Publication date: July 13, 2017
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Tomohiro UNO
  • Publication number: 20170194280
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Application
    Filed: September 17, 2015
    Publication date: July 6, 2017
    Inventors: Daizo ODA, Motoki ETO, Kazuyuki SAITO, Teruo HAIBARA, Ryo OISHI, Takashi YAMADA, Tomohiro UNO
  • Publication number: 20170179064
    Abstract: A bonding wire for a semiconductor device including a coating layer having Pd as a main component on the surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing a metallic element of Group 10 of the Periodic Table of Elements in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in 2nd bondability and excellent ball bondability in a high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at % to 75 at %.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 22, 2017
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Tomohiro UNO
  • Patent number: 9543266
    Abstract: Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 ?m2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 10% to less than 50%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 70% or more. During the drawing step, a drawing operation with a rate of reduction of area of 15.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 10, 2017
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD
    Inventors: Takashi Yamada, Daizo Oda, Ryo Oishi, Teruo Haibara, Tomohiro Uno
  • Patent number: 9536854
    Abstract: Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 ?m2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing step, a drawing operation with a rate of reduction of area of 15.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 3, 2017
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD
    Inventors: Takashi Yamada, Daizo Oda, Ryo Oishi, Teruo Haibara, Tomohiro Uno
  • Publication number: 20160111389
    Abstract: Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 ?m2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing step, a drawing operation with a rate of reduction of area of 15.
    Type: Application
    Filed: March 31, 2015
    Publication date: April 21, 2016
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Teruo HAIBARA, Tomohiro UNO
  • Publication number: 20160104687
    Abstract: Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 ?m2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 10% to less than 50%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction <100> with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 70% or more. During the drawing step, a drawing operation with a rate of reduction of area of 15.
    Type: Application
    Filed: March 31, 2015
    Publication date: April 14, 2016
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Teruo HAIBARA, Tomohiro UNO