Patents by Inventor Ryuichi Mishima

Ryuichi Mishima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8163588
    Abstract: A manufacturing method of a photoelectric conversion device included a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 24, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryuichi Mishima, Mineo Shimotsusa, Hiroaki Naruse
  • Publication number: 20110254065
    Abstract: An object of the present invention is to provide a photoelectric conversion device, wherein improvement of charge transfer properties when charge is output from a charge storage region and suppression of dark current generation during charge storage are compatible with each other. This object is achieved by forming a depletion voltage of a charge storage region in the range from zero to one half of a power source voltage (V), forming a gate voltage of a transfer MOS transistor during a charge transfer period in the range from one half of the power source voltage to the power source voltage (V) and forming a gate voltage of the transfer MOS transistor during a charge storage period in the range from minus one half of the power source voltage to zero (V).
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Yuzurihara, Seiichi Tamura, Ryuichi Mishima
  • Publication number: 20110244627
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Patent number: 7994552
    Abstract: An object of the present invention is to provide a photoelectric conversion device, wherein improvement of charge transfer properties when charge is output from a charge storage region and suppression of dark current generation during charge storage are compatible with each other. This object is achieved by forming a depletion voltage of a charge storage region in the range from zero to one half of a power source voltage (V), forming a gate voltage of a transfer MOS transistor during a charge transfer period in the range from one half of the power source voltage to the power source voltage (V) and forming a gate voltage of the transfer MOS transistor during a charge storage period in the range from minus one half of the power source voltage to zero (V).
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Seiichi Tamura, Ryuichi Mishima
  • Patent number: 7993951
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Publication number: 20110171770
    Abstract: A manufacturing method of a photoelectric conversion device included a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 14, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryuichi Mishima, Mineo Shimotsusa, Hiroaki Naruse
  • Patent number: 7977760
    Abstract: A manufacturing method is provided for a photoelectric conversion device in which no plane channeling is produced. The photoelectric conversion device includes a silicon substrate and a photoelectric conversion element on one principal plane of the silicon substrate that forms an off-angle ? with at least two planes perpendicular to a reference (1 0 0) plane within a range of 3.5°???4.5°, and an ion injecting direction for forming a semiconductor region constituting the photoelectric conversion element forms an angle ? to a direction perpendicular to the principal plane within a range of 0°<??45°, and further a direction of a projection of the ion injecting direction to the principal plane forms each angle ? with the two plane direction within a range of 0°<?<90°.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 12, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Shigeru Nishimura, Ryuichi Mishima, Yasushi Nakata
  • Publication number: 20110163407
    Abstract: A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2<C3<C1.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi YUZURIHARA, Ryuichi MISHIMA, Takanori WATANABE, Takeshi ICHIKAWA, Seiichi TAMURA
  • Patent number: 7935557
    Abstract: A manufacturing method of a photoelectric conversion device included a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 3, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryuichi Mishima, Mineo Shimotsusa, Hiroaki Naruse
  • Patent number: 7928486
    Abstract: A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2<C3<C1.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 19, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Ryuichi Mishima, Takanori Watanabe, Takeshi Ichikawa, Seiichi Tamura
  • Publication number: 20110049332
    Abstract: A photoelectric conversion device having a pixel array region in which a plurality of pixels each including a photoelectric converter are arrayed, and a peripheral region arranged around the pixel array region, the device comprising a multilayer wiring structure which is arranged on a semiconductor substrate, and includes wiring layers in the peripheral region more than wiring layers in the pixel array region, and a plurality of interlayer lenses which is arranged on the multilayer wiring structure in the pixel array region, wherein the plurality of interlayer lenses each includes a first insulator, and a second insulator arranged to cover the first insulator, and having a refractive index higher than the first insulator, and wherein the first insulator in each of the plurality of interlayer lenses, and an uppermost interlayer insulating film in the peripheral region in the multilayer wiring structure are made of an identical material.
    Type: Application
    Filed: August 10, 2010
    Publication date: March 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroaki Naruse, Ryuichi Mishima
  • Publication number: 20110027934
    Abstract: A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroaki Naruse, Takashi Okagawa, Ryuichi Mishima, Nobuhiko Sato, Hiroshi Yuzurihara
  • Publication number: 20100330723
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 30, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Patent number: 7838918
    Abstract: A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: November 23, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroaki Naruse, Takashi Okagawa, Ryuichi Mishima, Nobuhiko Sato, Hiroshi Yuzurihara
  • Publication number: 20100219497
    Abstract: The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 2, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Takeshi Ichikawa, Ryuichi Mishima
  • Publication number: 20100221864
    Abstract: At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 2, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Toru Koizumi, Akira Okita, Tetsuya Itano, Sakae Hashimoto, Ryuichi Mishima
  • Publication number: 20100173444
    Abstract: A manufacturing method of a photoelectric conversion device comprises a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.
    Type: Application
    Filed: November 20, 2009
    Publication date: July 8, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryuichi Mishima, Mineo Shimotsusa, Hiroaki Naruse
  • Patent number: 7745247
    Abstract: At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: June 29, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Tetsuya Itano, Sakae Hashimoto, Ryuichi Mishima
  • Patent number: 7737519
    Abstract: The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: June 15, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Takeshi Ichikawa, Ryuichi Mishima
  • Publication number: 20100096676
    Abstract: A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2<C3<Cl.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 22, 2010
    Applicant: Cannon Kabushiki Kaisha
    Inventors: Hiroshi YUZURIHARA, Ryuichi MISHIMA, Takanori WATANABE, Takeshi ICHIKAWA, Seiichi TAMURA