Patents by Inventor Sameer Pendharkar

Sameer Pendharkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200168733
    Abstract: A device includes a laterally diffused MOSFET, which in turn includes n-type source and drain regions in a p-type semiconductor substrate. A gate electrode is located over the semiconductor substrate between the source region and the drain region. An isolation region is laterally spaced apart from the source region, and is bounded by an n-type buried layer and an n-type well region that reaches from a surface of the substrate to the buried layer. A p-type doped region and an n-type doped region are disposed within the isolation region, the p-type doped region and the n-type doped region forming a diode. A first conductive path connects the n-type doped region to the source region, and a second conductive path connects the p-type doped region to the gate electrode.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar
  • Publication number: 20200161461
    Abstract: In some examples, a transistor comprises a gallium nitride (GaN) layer; a GaN-based alloy layer having a top side and disposed on the GaN layer, wherein source, drain, and gate contact structures are supported by the GaN layer; and a first doped region positioned in a drain access region and extending from the top side into the GaN layer.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Dong Seup LEE, Jungwoo JOH, Pinghai HAO, Sameer PENDHARKAR
  • Publication number: 20200146945
    Abstract: An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 14, 2020
    Inventors: Marie DENISON, Philip L. HOWER, Sameer PENDHARKAR
  • Patent number: 10651274
    Abstract: A semiconductor device includes a MOS transistor located within a semiconductor substrate of a first conductivity type. The transistor includes a body well located between a drain well and a substrate contact well. A buried voltage blocking region of a second conductivity type is located within the substrate and is connected to the body well. The buried voltage blocking region extends toward the substrate contact well, with an unmodified portion of the substrate remaining between the voltage blocking region and the substrate contact well.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: May 12, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 10629674
    Abstract: An integrated trench capacitor and method for making the trench capacitor is disclosed. The method includes forming a trench in a silicon layer, forming a first dielectric on the exposed surface of the trench, performing an anisotropic etch of the first dielectric to expose silicon at the bottom of the trench, implanting a dopant into exposed silicon at the bottom of the trench, forming a first polysilicon layer over the first dielectric, forming a second dielectric over the first polysilicon layer, and forming a second polysilicon layer over the second dielectric to fill the trench.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: April 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki Kawahara, Binghua Hu, Sameer Pendharkar
  • Publication number: 20200075576
    Abstract: An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a bipolar transistor structure interfacing with a PN junction of a high voltage device, which is configured to discharge the ESD current during an ESD event. The bipolar transistor structure has a collector region overlapping the PN junction, a base region embedded with sufficient pinch resistance to launch the snapback protection, and an emitter region for discharging the ESD current.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Sunglyong Kim, David LaFonteese, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 10580775
    Abstract: A semiconductor device adopts an isolation scheme to protect low voltage transistors from high voltage operations. The semiconductor device includes a substrate, a buried layer, a transistor well region, a first trench, and a second trench. The substrate has a top surface and a bottom surface. The buried layer is positioned within the substrate, and the transistor well region is positioned above the buried layer. The first trench extends from the top surface to penetrate the buried layer, and the first trench has a first trench depth. The second trench extending from the top surface to penetrate the buried layer. The second trench is interposed between the first trench and the transistor well region. The second trench has a second trench depth that is less than the first trench depth.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: March 3, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Binghua Hu, Alexei Sadovnikov, Guru Mathur
  • Publication number: 20200064394
    Abstract: A method includes applying a DC stress condition to a transistor for a predetermined stress time, measuring an impedance of the transistor after the predetermined stress time, and repeating the application of the DC stress condition and the measurement of the impedance until the measured impedance exceeds an impedance threshold or a total stress time exceeds a time threshold, where the DC stress condition includes applying a non-zero drain voltage signal to a drain terminal of the transistor, applying a gate voltage signal to a gate terminal of the transistor, and applying a non-zero source current signal to a source terminal of the transistor.
    Type: Application
    Filed: May 1, 2019
    Publication date: February 27, 2020
    Applicant: Texas Instruments Incorporated
    Inventors: Dong Seup Lee, Jungwoo Joh, Pinghai Hao, Sameer Pendharkar
  • Patent number: 10571511
    Abstract: In at least some embodiments, a system comprises a socket gate terminal configured to receive a first voltage to activate and inactivate a device under test (DUT) coupled to the socket gate terminal. The system also comprises a socket source terminal configured to provide a reference voltage to the DUT. The system further comprises a socket drain terminal configured to provide a second voltage to the DUT to stress the DUT when the DUT is inactive. The socket drain terminal is further configured to receive a third voltage to cause a current to flow through a pathway in the DUT between the socket drain terminal and the socket source terminal when the DUT is active. The socket drain terminal is further configured to provide a fourth voltage indicative of a resistance of the pathway in the DUT when the DUT is active and is heated to a temperature above an ambient temperature associated with the system.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: February 25, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alex Paikin, Colin Johnson, Tathagata Chatterjee, Sameer Pendharkar
  • Patent number: 10559681
    Abstract: A lateral junction diode device includes a substrate having at least a semiconductor surface layer. A depletion-mode LDMOS device is in the semiconductor surface layer including a source, drain, and a gate above a gate dielectric, and a channel region under the gate on the gate dielectric. A drift region is between the channel region and the drain, wherein the drain also provides a cathode for the lateral junction diode device. An embedded diode includes a second cathode and an anode that is shared with the device. The embedded diode is junction isolated by an isolation region located between the anode and the source. The anode and isolation region are directly connected to the gate and the second cathode is directly connected to the source.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 11, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 10535731
    Abstract: An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: January 14, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Philip L. Hower, Sameer Pendharkar
  • Patent number: 10510847
    Abstract: A transistor device includes a field plate extending from a source contact layer and defining an opening above a gate metal layer. Coplanar with the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. Meanwhile, the opening allows a gate runner layer above the field plate to access and connect to the gate metal layer, which helps reduce the resistance of the gate structure. By vertically overlapping the metal gate layer, the field plate, and the gate runner layer, the transistor device may achieve fast switching performance without incurring any size penalty.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 17, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroyuki Tomomatsu, Hiroshi Yamasaki, Sameer Pendharkar
  • Patent number: 10504885
    Abstract: An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a bipolar transistor structure interfacing with a PN junction of a high voltage device, which is configured to discharge the ESD current during an ESD event. The bipolar transistor structure has a collector region overlapping the PN junction, a base region embedded with sufficient pinch resistance to launch the snapback protection, and an emitter region for discharging the ESD current.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: December 10, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Sunglyong Kim, David LaFonteese, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 10468324
    Abstract: A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: November 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Sameer Pendharkar
  • Publication number: 20190279976
    Abstract: An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a bipolar transistor structure interfacing with a PN junction of a high voltage device, which is configured to discharge the ESD current during an ESD event. The bipolar transistor structure has a collector region overlapping the PN junction, a base region embedded with sufficient pinch resistance to launch the snapback protection, and an emitter region for discharging the ESD current.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventors: Sunglyong Kim, David LaFonteese, Seetharaman Sridhar, Sameer Pendharkar
  • Publication number: 20190245047
    Abstract: A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Hiroyuki Tomomatsu, Sameer Pendharkar, Hiroshi Yamasaki
  • Publication number: 20190237535
    Abstract: An integrated trench capacitor and method for making the trench capacitor is disclosed. The method includes forming a trench in a silicon layer, forming a first dielectric on the exposed surface of the trench, performing an anisotropic etch of the first dielectric to expose silicon at the bottom of the trench, implanting a dopant into exposed silicon at the bottom of the trench, forming a first polysilicon layer over the first dielectric, forming a second dielectric over the first polysilicon layer, and forming a second polysilicon layer over the second dielectric to fill the trench.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Hideaki Kawahara, Binghua Hu, Sameer Pendharkar
  • Patent number: 10347621
    Abstract: An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a bipolar transistor structure interfacing with a PN junction of a high voltage device, which is configured to discharge the ESD current during an ESD event. The bipolar transistor structure has a collector region overlapping the PN junction, a base region embedded with sufficient pinch resistance to launch the snapback protection, and an emitter region for discharging the ESD current.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 9, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Sunglyong Kim, David LaFonteese, Seetharaman Sridhar, Sameer Pendharkar
  • Publication number: 20190206997
    Abstract: A semiconductor device includes a MOS transistor located within a semiconductor substrate of a first conductivity type. The transistor includes a body well located between a drain well and a substrate contact well. A buried voltage blocking region of a second conductivity type is located within the substrate and is connected to the body well. The buried voltage blocking region extends toward the substrate contact well, with an unmodified portion of the substrate remaining between the voltage blocking region and the substrate contact well.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 4, 2019
    Inventors: Sunglyong KIM, Seetharaman SRIDHAR, Sameer PENDHARKAR
  • Publication number: 20190198666
    Abstract: A lateral junction diode device includes a substrate having at least a semiconductor surface layer. A depletion-mode LDMOS device is in the semiconductor surface layer including a source, drain, and a gate above a gate dielectric, and a channel region under the gate on the gate dielectric. A drift region is between the channel region and the drain, wherein the drain also provides a cathode for the lateral junction diode device. An embedded diode includes a second cathode and an anode that is shared with the device. The embedded diode is junction isolated by an isolation region located between the anode and the source. The anode and isolation region are directly connected to the gate and the second cathode is directly connected to the source.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Inventors: Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar