Patents by Inventor Sandeep Nijhawan

Sandeep Nijhawan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8127121
    Abstract: Executing programs coded in an instruction set of a first computer on a computer of a second, different architecture. An operating system maintains an association between each one of a set of concurrent threads and a set of computer resources of the thread's context. Without modifying a pre-existing operating system of the computer, an entry exception is establishing to be raised on each entry to the operating system at a specified entry point or on a specified condition. The entry exception has an associated entry handler programmed to save a context of an interrupted thread and modify the thread context before delivering the modified context to the operating system. A resumption exception is established to be raised on each resumption from the operating system complementary to one of the specified entries. The resumption exception has an associated exit handler programmed to restore the context saved by a corresponding execution of the entry handler.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 28, 2012
    Assignee: ATI Technologies ULC
    Inventors: John S. Yates, Jr., Matthew F. Storch, Sandeep Nijhawan, Dale R. Jurich, Korbin S. Van Dyke
  • Publication number: 20120024388
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Application
    Filed: July 12, 2011
    Publication date: February 2, 2012
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Kenric T. Choi, James D. Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Publication number: 20110308453
    Abstract: A method and apparatus are provided for monitoring and controlling substrate processing parameters for a cluster tool that utilizes chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates within a processing chamber. A closed-loop control system performs in-situ monitoring of the Group III-nitride film growth rate and adjusts film growth parameters as required to maintain a target growth rate. In another embodiment, a closed-loop control system performs in-situ monitoring of film growth parameters for multiple processing chambers for one or more film deposition systems.
    Type: Application
    Filed: January 23, 2009
    Publication date: December 22, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jie Su, Lori D. Washington, David Bour, Jacob Grayson, Sandeep Nijhawan, Ronald Stevens
  • Patent number: 7976631
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Kenric T. Choi, James D. Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Publication number: 20110121503
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for chemical vapor deposition (CVD) on a substrate, and, in particular, to a process chamber and components for use in metal organic chemical vapor deposition. The apparatus comprises a chamber body defining a process volume. A showerhead in a first plane defines a top portion of the process volume. A carrier plate extends across the process volume in a second plane forming an upper process volume between the showerhead and the susceptor plate. A transparent material in a third plane defines a bottom portion of the process volume forming a lower process volume between the carrier plate and the transparent material. A plurality of lamps forms one or more zones located below the transparent material. The apparatus provides uniform precursor flow and mixing while maintaining a uniform temperature over larger substrates thus yielding a corresponding increase in throughput.
    Type: Application
    Filed: August 5, 2010
    Publication date: May 26, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: BRIAN H. BURROWS, Ronald Stevens, Jacob Grayson, Joshua J. Podesta, Sandeep Nijhawan, Lori D. Washington, Alexander Tam, Sumedh Acharya
  • Publication number: 20110117728
    Abstract: A method and apparatus for removing deposition products from internal surfaces of a processing chamber, and for preventing or slowing growth of such deposition products. A halogen containing gas is provided to the chamber to etch away deposition products. A halogen scavenging gas is provided to the chamber to remove any residual halogen. The halogen scavenging gas is generally activated by exposure to electromagnetic energy, either inside the processing chamber by thermal energy, or in a remote chamber by electric field, UV, or microwave. A deposition precursor may be added to the halogen scavenging gas to form a deposition resistant film on the internal surfaces of the chamber. Additionally, or alternately, a deposition resistant film may be formed by sputtering a deposition resistant metal onto internal components of the processing chamber in a PVD process.
    Type: Application
    Filed: August 26, 2010
    Publication date: May 19, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jie Su, Lori D. Washington, Sandeep Nijhawan, Olga Kryliouk, Jacob Grayson, Sang Won Kang, Dong Hyung Lee, Hua Chung
  • Publication number: 20110079251
    Abstract: A method for in-situ cleaning of a deposition system is disclosed. The method includes providing a deposition system with portions of the deposition system deposited with at least a group III element or a compound of a group III element. Halogen containing fluid is introduced into the deposition system. The halogen containing fluid is permitted to react with the group III element to form a halide. The halide in solid state is converted to a gaseous state. The halide in gaseous state is purged out of the deposition system.
    Type: Application
    Filed: March 29, 2010
    Publication date: April 7, 2011
    Inventors: Olga Kryliouk, Jie Su, Kevin Griffin, Sandeep Nijhawan
  • Publication number: 20110076400
    Abstract: One embodiment of the forming a nanocrystalline diamond-structured carbon layer on a silicon carbide layer comprises providing a silicon carbide layer in a reaction chamber and exposing the silicon carbide layer to a chlorine containing gas for an exposure time period to form a nanocrystalline diamond-structured carbon layer from the silicon carbide layer.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 31, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Olga Kryliouk, Yuriy Melnik, Brian H. Burrows, Ronald Stevens, Jacob Grayson, Sandeep Nijhawan
  • Publication number: 20110070721
    Abstract: Apparatus and methods are described for fabricating a compound nitride semiconductor structure. Group-III and nitrogen precursors are flowed into a first processing chamber to deposit a first layer over a substrate with a thermal chemical-vapor-deposition process. The substrate is transferred from the first processing chamber to a second processing chamber. Group-III and nitrogen precursors are flowed into the second processing chamber to deposit a second layer over the first layer with a thermal chemical-vapor-deposition process. The first and second group-III precursors have different group-III elements.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Sandeep NIJHAWAN, David Bour, Lori Washington, Jacob Smith, Ronald Stevens, David Eaglesham
  • Patent number: 7904975
    Abstract: Computer implemented methods and apparatus for determining availability information for a first one of a plurality of products for publication via a wide area network. The availability information is calculated with reference to a delivery date, an available number of units, and a reserved number of units, the delivery date having been specified by a user via the network, the available number of units having been determined with reference to inventory information, and the reserved number of units having been determined with reference to current order information.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: March 15, 2011
    Assignee: IpVenture, Inc.
    Inventors: Andre Kruglikov, Sandeep Nijhawan, Ajit Ramachandra Mayya, Sunil Bhargava, Margaret Sue Lloyd, Justin Miller
  • Publication number: 20100261340
    Abstract: The present invention generally provides apparatus and methods for forming LED structures. One embodiment of the present invention provides a method for fabricating a compound nitride structure comprising forming a first layer comprising a first group-III element and nitrogen on substrates in a first processing chamber by a hydride vapor phase epitaxial (HVPE) process or a metal organic chemical vapor deposition (MOCVD) process, forming a second layer comprising a second group-III element and nitrogen over the first layer in a second processing chamber by a MOCVD process, and forming a third layer comprising a third group-III element and nitrogen over the second layer by a MOCVD process.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 14, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SANDEEP NIJHAWAN, Brian H. Burrows, Tetsuya Ishikawa, Olga Kryliouk, Anand Vasudev, Jie Su, David H. Quach, Anzhong Chang, Yuriy Melnik, Harsukhdeep S. Ratia, Son T. Nguyen, Lily Pang
  • Publication number: 20100215854
    Abstract: A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 26, 2010
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Jacob Grayson, Kenric T. Choi, Sumedh Acharya, Sandeep Nijhawan, Olga Kryliouk, Yuriy Melnik
  • Patent number: 7781016
    Abstract: Methods are disclosed of determining a fill level of a precursor in a bubbler. The bubbler is fluidicly coupled with a substrate processing chamber through a vapor-delivery system. The bubbler and vapor-delivery system are backfilled with a known dose of a backfill gas. A pressure and temperature of the backfill gas are determined, permitting a total volume for the backfill gas in the bubbler and vapor-delivery system to be determined by application of a gas law. The fill level of the precursor in the bubbler is determined as a difference between (1) a total volume of the bubbler and vapor-delivery system and (2) the determined total volume for the backfill gas.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ronald Stevens, Brendan McDougall, Jacob W. Smith, Garry Kwong, Sandeep Nijhawan, Lori D. Washington
  • Patent number: 7674352
    Abstract: A gaseous mixture is deposited onto a substrate surface using a showerhead. A first plenum of the showerhead has a plurality of channels fluidicly coupled with an interior of a processing chamber. A second plenum gas flows through a plurality of tubes extending from a second plenum of the showerhead through the channels into the interior of the processing chamber. The diameter of the tubes is smaller than the diameter of the channels such that a first plenum gas flows into the interior of the processing chamber through a space defined between the outer surface of the tubes and the surface of the channels. The length and diameter of the tubes determine the level of distribution and the molar ratio of the first gas and the second gas in the gaseous mixture that is deposited on the surface of the substrate.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Lori Washington, Sandeep Nijhawan, Ronald Stevens, Jacob Smith, Alexander Tam, Nyi Oo Myo, Steve Park, Rosemary Twist, Garry Kwong, Jie Su
  • Patent number: 7585769
    Abstract: A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the III-V nitride layer on the substrate.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Jacob W. Smith, Sandeep Nijhawan, Lori D. Washington, David Eaglesham
  • Patent number: 7575982
    Abstract: Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: August 18, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori Washington, Jacob Smith, David Eaglesham
  • Publication number: 20090194024
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for chemical vapor deposition (CVD) on a substrate, and, in particular, to a process chamber and components for use in metal organic chemical vapor deposition. The apparatus comprises a chamber body defining a process volume. A showerhead in a first plane defines a top portion of the process volume. A carrier plate extends across the process volume in a second plane forming an upper process volume between the showerhead and the susceptor plate. A transparent material in a third plane defines a bottom portion of the process volume forming a lower process volume between the carrier plate and the transparent material. A plurality of lamps forms one or more zones located below the transparent material. The apparatus provides uniform precursor flow and mixing while maintaining a uniform temperature over larger substrates thus yielding a corresponding increase in throughput.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Brian H. Burrows, Ronald Stevens, Jacob Grayson, Joshua J. Podesta, Sandeep Nijhawan, Lori D. Washington, Alexander Tam, Sumedh Acharya
  • Publication number: 20090194026
    Abstract: One embodiment of a processing system for fabricating compound nitride semiconductor devices comprises one or more processing chamber operable with form a compound nitride semiconductor layer on a substrate, a transfer chamber coupled with the processing chamber, a loadlock chamber coupled with the transfer chamber, and a load station coupled with the loadlock chamber, wherein the load station comprises a conveyor tray movable to convey a carrier plate loaded with one or more substrates into the loadlock chamber. Compared to a single chamber reactor, the multi-chamber processing system expands the potential complexity and variety of compound structures. Additionally, the system can achieve higher quality and yield by specialization of individual chambers for specific epitaxial growth processes. Throughput is increased by simultaneous processing in multiple chambers.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: BRIAN H. BURROWS, Lori D. Washington, Ronald Stevens, Kenric T. Choi, Anthony F. White, Roger N. Anderson, Sandeep Nijhawan, Joshua J. Podesta, Alexander Tam
  • Patent number: 7560364
    Abstract: In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Jacob Smith, Lori Washington
  • Publication number: 20090149008
    Abstract: Embodiments of the invention generally relate to methods for forming Group III-V materials by a hydride vapor phase epitaxy (HVPE) process. In one embodiment, a method for forming a gallium nitride material on a substrate within a processing chamber is provided which includes heating a metallic source to form a heated metallic source, wherein the heated metallic source contains gallium, aluminum, indium, alloys thereof, or combinations thereof, exposing the heated metallic source to chlorine gas while forming a metallic chloride gas, exposing the substrate to the metallic chloride gas and a nitrogen precursor gas while forming a metal nitride layer on the substrate during the HVPE process. The method further provides exposing the substrate to chlorine gas during a pretreatment process prior to forming the metal nitride layer. In one example, the exhaust conduit of the processing chamber is heated to about 200° C. or less during the pretreatment process.
    Type: Application
    Filed: October 2, 2008
    Publication date: June 11, 2009
    Inventors: Olga Kryliouk, Sandeep Nijhawan, Yuriy Melnik, Lori D. Washington, Jacob W. Grayson, Sung W. Jun, Jie Su