Patents by Inventor Sang-Su Kim

Sang-Su Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6693013
    Abstract: The present invention provides a semiconductor transistor using an L-shaped spacer and a method of fabricating the same. The semiconductor transistor includes a gate pattern formed on a semiconductor substrate and an L-shaped third spacer formed beside the gate pattern and having a horizontal protruding portion. An L-shaped fourth spacer is formed between the third spacer and the gate pattern, and between the third spacer and the substrate. A high-concentration junction area is positioned in the substrate beyond the third spacer, and a low-concentration junction area is positioned under the horizontal protruding portion of the third spacer. A medium-concentration junction area is positioned between the high- and low-concentration junction areas.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: February 17, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Young-Gun Ko, Tae-Hee Choe, Sang-Su Kim
  • Publication number: 20040012055
    Abstract: A semiconductor device includes a hetero grain stack gate (HGSG). The device includes a semiconductor substrate having a surface, a gate insulating layer formed over the surface of the semiconductor substrate, and a gate electrode formed over the gate insulating layer, wherein the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, and an upper poly-Si layer having a random crystalline structure. In one embodiment, the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, an intermediate layer having an random crystalline structure, and an upper poly-Si layer having a columnar crystalline structure.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 22, 2004
    Inventors: Hwa Sung Rhee, Nae In Lee, Jung II Lee, Sang Su Kim, Bae Geum Jong
  • Patent number: 6674235
    Abstract: A photocathode structure having a photoelectric face plate protective layer, in order to prevent a photoelectric effect from being deteriorated sharply due to a high reaction of oxygen with respect to most of existing photoelectric face plate materials when the photoelectric face plate used for generating photoelectrons by a photoelectric effect is exposed to the atmosphere, is provided. For example, a diamond-like carbon thin layer is used as a photocathode protective layer, to thereby perform a function of protection of the photoelectric face plate through isolation of the photoelectric face plate from the atmosphere and enable electrons generated from the photoelectric face plate to pass through a diamond-like carbon thin layer, which is deposited thinly, by the tunneling effect so that the performance of the photocathode is not affected.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: January 6, 2004
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Keong-Su Lim, Duk-Young Jeon, Chang-Hyun Lee, Sang-Su Kim
  • Patent number: 6670677
    Abstract: A SOI substrate having an etch stopping layer, a SOI integrated circuit fabricated on the SOI substrate, and a method of fabricating both are provided. The SOI substrate includes a supporting substrate, an etch stopping layer staked on the supporting substrate, a buried oxide layer and a semiconductor layer sequentially stacked on the etch stopping layer. The etch stopping layer preferably has an etch selectivity with respect to the buried oxide layer. A device isolation layer is preferably formed to define active regions. The device isolation, buried oxide and etch-stop layers are selectively removed to form first and second holes exposing the supporting substrate without damaging it. Semiconductor epitaxial layers grown on the exposed supporting substrate therefore have single crystalline structures without crystalline defects. Thus, when impurity regions are formed at surfaces of the epitaxial layers, a high performance PN diode having a superior leakage current characteristic may be formed.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: December 30, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hee Choe, Nae-In Lee, Geum-Jong Bae, Sang-Su Kim, Hwa-Sung Rhee
  • Publication number: 20030235966
    Abstract: Provided is a method for fabricating a semiconductor device. According to the method, an insolating layer which defines an active region on a semiconductor substrate is formed and a gate is formed on the active region of the semiconductor substrate. A first spacer layer which covers the gate and is extended to cover the isolating layer is formed as a first insulating material. A second spacer layer is formed on the first spacer layer as a second insulating material. A second spacer which remains on the sidewalls of the gate by removing some portions of the second spacer layer is formed. A first spacer by a portion of the first spacer layer, which is protected by the second spacer by partially etching the exposed portions of the first spacer layer using the second spacer as a mask so as to reduce the thickness of the first spacer layer, and a protection layer, which protects the insulating layer by remaining the portion of the first spacer of which thickness is reduced, are formed.
    Type: Application
    Filed: May 23, 2003
    Publication date: December 25, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sang-Su Kim, Geum-Jong Bae, Ki-Chul Kim, Jung-Il Lee, Hwa-Sung Rhee
  • Patent number: 6667525
    Abstract: A semiconductor device includes a hetero grain stack gate (HGSG). The device includes a semiconductor substrate having a surface, a gate insulating layer formed over the surface of the semiconductor substrate, and a gate electrode formed over the gate insulating layer, wherein the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, and an upper poly-Si layer having a random crystalline structure. In one embodiment, the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, an intermediate layer having an random crystalline structure, and an upper poly-Si layer having a columnar crystalline structure.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: December 23, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa Sung Rhee, Nae In Lee, Jung Il Lee, Sang Su Kim, Bae Geum Jong
  • Publication number: 20030227055
    Abstract: A semiconductor device having a gate with a negative slope and a method of manufacturing the same. A poly-SiGe layer with a Ge density profile which decreases linearly from the bottom of the gate toward the top of the gate is formed and a poly-SiGe gate having a negative slope is formed by patterning the poly-SiGe layer. It is possible to form a gate whose bottom is shorter than its top defined by photolithography by taking advantage of the variation of etching characteristics with Ge density when patterning. Accordingly, the gate is compact enough for a short channel device and gate resistance can be reduced.
    Type: Application
    Filed: January 13, 2003
    Publication date: December 11, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Geum-jong Bae, Nae-in Lee, Ki-chul Kim, Hwa-sung Rhee, Sang-su Kim, Jung-il Lee
  • Publication number: 20030218212
    Abstract: A method of forming an SOI semiconductor substrate and the SOI semiconductor substrate formed thereby, is provided. The method includes forming sequentially buried oxide, diffusion barrier and SOI layers on a semiconductor substrate. The diffusion barrier layer is formed by an insulating layer having a lower impurity diffusion coefficient as compared with the buried oxide layer. The diffusion barrier layer serves to prevent impurities implanted into the SOI layer from being diffused into the buried oxide layer or the semiconductor substrate.
    Type: Application
    Filed: March 26, 2003
    Publication date: November 27, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jung-Il Lee, Geum-Jong Bae, Ki-Chul Kim, Hwa-Sung Rhee, Sang-Su Kim
  • Publication number: 20030219938
    Abstract: A CMOS gate electrode formed using a selective growth method and a fabrication method thereof, wherein, in the CMOS gate electrode, a first gate pattern of polysilicon germanium (poly-SiGe) is formed on a PMOS region of a semiconductor substrate, and a second gate pattern of polysilicon is selectively grown from an underlying layer. Although the first gate pattern on the PMOS region is formed of poly-SiGe, the characteristics of the second gate pattern on the NMOS region do not deteriorate, thereby increasing the overall characteristics of a CMOS transistor.
    Type: Application
    Filed: April 15, 2003
    Publication date: November 27, 2003
    Inventors: Hwa-sung Rhee, Geum-jong Bae, Sang-su Kim, Jung-il Lee, Young-ki Ha, Ki-chul Kim
  • Publication number: 20030215989
    Abstract: A semiconductor device having a transistor of gate all around (GAA) type and a method of fabricating the same are disclosed. A SOI substrate composed of a SOI layer, a buried oxide layer and a lower substrate is prepared. The SOI layer has at least one unit dual layer of a silicon germanium layer and a silicon layer. The SOI layer is patterned to form an active layer pattern to a certain direction. An insulation layer is formed to cover the active layer pattern. An etch stop layer is stacked on the active layer pattern covered with the insulation layer. The etch stop layer is patterned and removed at a gate region crossing the active layer pattern at the channel region. The insulation layer is removed at the gate region. The silicon germanium layer is isotropically etched and selectively removed to form a cavity at the channel region of the active layer pattern.
    Type: Application
    Filed: June 17, 2003
    Publication date: November 20, 2003
    Inventors: Sang-Su Kim, Tae-Hee Choe, Hwa-Sung Rhee, Geum-Jong Bae, Nae-In Lee
  • Patent number: 6633066
    Abstract: CMOS integrated circuit devices include an electrically insulating layer and an unstrained silicon active layer on the electrically insulating layer. An insulated gate electrode is also provided on a surface of the unstrained silicon active layer. A Si1−xGex layer is also disposed between the electrically insulating layer and the unstrained silicon active layer. The Si1−xGex layer forms a first junction with the unstrained silicon active layer and has a graded concentration of Ge therein that decreases monotonically in a first direction extending from a peak level towards the surface of the unstrained silicon active layer. The peal Ge concentration level is greater than x=0.15 and the concentration of Ge in the Si1−xGex layer varies from the peak level to a level less than about x=0.1 at the first junction. The concentration of Ge at the first junction may be abrupt. More preferably, the concentration of Ge in the Si1−xGex layer varies from the peak level where 0.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 14, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-jong Bae, Tae-hee Choe, Sang-su Kim, Hwa-sung Rhee, Nae-in Lee, Kyung-wook Lee
  • Publication number: 20030164528
    Abstract: A semiconductor device includes a hetero grain stack gate (HGSG). The device includes a semiconductor substrate having a surface, a gate insulating layer formed over the surface of the semiconductor substrate, and a gate electrode formed over the gate insulating layer, wherein the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, and an upper poly-Si layer having a random crystalline structure. In one embodiment, the gate electrode includes a lower poly-SiGe layer having a columnar crystalline structure, an intermediate layer having an random crystalline structure, and an upper poly-Si layer having a columnar crystalline structure.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventors: Hwa Sung Rhee, Nae In Lee, Jung II Lee, Sang Su Kim, Bae Geum Jong
  • Patent number: 6605847
    Abstract: A semiconductor device having a transistor of gate all around (GAA) type and a method of fabricating the same are disclosed. A SOI substrate composed of a SOI layer, a buried oxide layer and a lower substrate is prepared. The SOI layer has at least one unit dual layer of a silicon germanium layer and a silicon layer. The SOI layer is patterned to form an active layer pattern to a certain direction. An insulation layer is formed to cover the active layer pattern. An etch stop layer is stacked on the active layer pattern covered with the insulation layer. The etch stop layer is patterned and removed at a gate region crossing the active layer pattern at the channel region. The insulation layer is removed at the gate region. The silicon germanium layer is isotropically etched and selectively removed to form a cavity at the channel region of the active layer pattern.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: August 12, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Su Kim, Tae-Hee Choe, Hwa-Sung Rhee, Geum-Jong Bae, Nae-In Lee
  • Publication number: 20030132506
    Abstract: In a CMOS semiconductor device having a substrate, a gate insulating layer formed on the substrate, at least one first polysilicon gate formed over the substrate in at least one PMOS transistor region, and at least one second polysilicon gate formed over the substrate in at least one NMOS transistor region, a total amount of Ge in the first polysilicon gate is the same as that in the second polysilicon gate, a distribution of Ge concentration in the first and/or second polysilicon gate is different according to a distance from the gate insulating layer, and Ge concentration in a portion of the first polysilicon gate adjacent to the gate insulating layer is higher than that in the second polysilicon gate. The Ge concentration in the portion of the first polysilicon gate adjacent to the gate insulating layer is more than two times as high as that in the second polysilicon gate.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 17, 2003
    Inventors: Hwa-Sung Rhee, Geum-Jong Bae, Tae-Hee Choe, Sang-Su Kim, Nae-In Lee
  • Publication number: 20030119280
    Abstract: A method for forming SOI substrates including a SOI layer containing germanium and a strained silicon layer disposed on the SOI layer, comprises forming a relaxed silicon-germanium layer on a first silicon substrate using an epitaxial growth method, and forming a porous silicon-germanium layer thereon. A silicon-germanium epitaxial layer is formed on the porous silicon-germanium layer, an oxide layer is formed on a second silicon substrate, the second silicon substrate is bonded where the oxide layer is formed to the first silicon substrate where the silicon-germanium epitaxial layer is formed. Layers are removed to expose the silicon-germanium epitaxial layer and a strained silicon epitaxial layer is formed thereon. The porous silicon-germanium layer prevents lattice defects of the relaxed silicon-germanium layer from transferring to the silicon-germanium epitaxial layer. Therefore, it is possible to form the silicon-germanium layer and the strained silicon layer of the SOI layer without defects.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 26, 2003
    Inventors: Jung-Il Lee, Kazuyuki Fujihara, Nae-In Lee, Geum-Jong Bae, Hwa-Sung Rhee, Sang-su Kim
  • Publication number: 20030094662
    Abstract: A MOS transistor having a T-shaped gate electrode and a method for fabricating the same are provided, wherein the MOS transistor includes a T-shaped gate electrode on a semiconductor substrate; an L-shaped lower spacer disposed at both sides of the gate electrode to cover a top surface of the semiconductor substrate; and low-, mid-, and high-concentration impurity regions formed in the semiconductor substrate of both sides of the gate electrode. The high-concentration impurity region is disposed in the semiconductor substrate next to the lower spacer and the mid-concentration impurity region is disposed between the high- and low-concentration impurity regions. A MOS transistor according to the present invention provides a decrease in a capacitance, a decrease in a channel length, and an increase in a cross-sectional area of the gate electrode. At the same time, the mid-concentration impurity region provides a decrease in a source/drain resistance Rsd.
    Type: Application
    Filed: October 21, 2002
    Publication date: May 22, 2003
    Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Sang-Su Kim, Jung-Il Lee
  • Publication number: 20030047133
    Abstract: A photo-induced process apparatus uses a transparent film instead of an optical window, to thereby reduce a light absorption loss by use of an optical window.
    Type: Application
    Filed: April 1, 2002
    Publication date: March 13, 2003
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Keong-Su Lim, Sang-Su Kim
  • Publication number: 20030048075
    Abstract: A photocathode structure having a photoelectric face plate protective layer, in order to prevent a photoelectric effect from being deteriorated sharply due to a high reaction of oxygen with respect to most of existing photoelectric face plate materials when the photoelectric face plate used for generating photoelectrons by a photoelectric effect i s exposed to the atmosphere, is provided. For example, a diamond-like carbon thin layer is used as a photocathode protective layer, to thereby perform a function of protection of the photoelectric face plate through isolation of the photoelectric face plate from the atmosphere and enable electrons generated from the photoelectric face plate to pass through a diamond-like carbon thin layer, which is deposited thinly, by the tunneling effect so that the performance of the photocathode is not affected.
    Type: Application
    Filed: April 1, 2002
    Publication date: March 13, 2003
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Keong-Su Lim, Duk-Young Jeon, Chang-Hyun Lee, Sang-Su Kim
  • Patent number: 6524902
    Abstract: In a CMOS semiconductor device having a substrate, a gate insulating layer formed on the substrate, at least one first polysilicon gate formed over the substrate in at least one PMOS transistor region, and at least one second polysilicon gate formed over the substrate in at least one NMOS transistor region, a total amount of Ge in the first polysilicon gate is the same as that in the second polysilicon gate, a distribution of Ge concentration in the first and/or second polysilicon gate is different according to a distance from the gate insulating layer, and Ge concentration in a portion of the first polysilicon gate adjacent to the gate insulating layer is higher than that in the second polysilicon gate. The Ge concentration in the portion of the first polysilicon gate adjacent to the gate insulating layer is more than two times as high as that in the second polysilicon gate.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: February 25, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-Sung Rhee, Geum-Jong Bae, Tae-Hee Choe, Sang-Su Kim, Nae-In Lee
  • Patent number: 6518645
    Abstract: In an SOI-type semiconductor device and a method of forming the same a semiconductor device is formed in an SOI-type substrate that is composed of a lower silicon layer, a buried oxide layer, and an SOI layer. The SOI substrate includes a device region isolated by a device isolation layer and the buried oxide layer, in which a source/drain region for forming at least one MOSFET at a body composed of the SOI layer is formed; and a ground region which is isolated from the device region by the device isolation layer and is composed of the body. A bottom portion of the device isolation layer is separated from the buried oxide layer by a connecting portion that electrically connects a body of the device region to a body of the ground region through the SOI layer. A silicon germanium layer is formed in the SOI layer, and at least partially remains at the SOI layer connecting the body of the device region to the body of the ground region in the connecting portion.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: February 11, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-Jong Bae, Sang-Su Kim, Tae-Hee Choe, Hwa-Sung Rhee