Patents by Inventor Sansaptak DASGUPTA

Sansaptak DASGUPTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942378
    Abstract: Techniques related to III-N transistors having improved performance, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include first and second crystalline III-N material layers separated by an intervening layer other than a III-N material such that the first crystalline III-N material layer has a first crystal orientation that is inverted with respect to a second crystal orientation of the second crystalline III-N material layer.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11908687
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Patent number: 11881511
    Abstract: A transistor is disclosed. The transistor includes a substrate, a superlattice structure that includes a plurality of heterojunction channels, and a gate that extends to one of the plurality of heterojunction channels. The transistor also includes a source adjacent a first side of the superlattice structure and a drain adjacent a second side of the superlattice structure.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 23, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Johann C. Rode, Paul B. Fischer, Walid M. Hafez
  • Patent number: 11848362
    Abstract: Disclosed herein are IC structures, packages, and devices that include transistors, e.g., III-N transistors, having a source region, a drain region (together referred to as “source/drain” (S/D) regions), and a gate stack. In one aspect, a contact to at least one of the S/D regions of a transistor may have a width that is smaller than a width of the S/D region. In another aspect, a contact to a gate electrode material of the gate stack of a transistor may have a width that is smaller than a width of the gate electrode material. Reducing the width of contacts to S/D regions or gate electrode materials of a transistor may reduce the overlap area between various pairs of these contacts, which may, in turn, allow reducing the off-state capacitance of the transistor. Reducing the off-state capacitance of III-N transistors may advantageously allow increasing their switching frequency.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 19, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11799057
    Abstract: Light emitting devices employing one or more Group III-Nitride polarization junctions. A III-N polarization junction may include two III-N material layers having opposite crystal polarities. The opposing polarities may induce a two-dimensional charge carrier sheet within each of the two III-N material layers. Opposing crystal polarities may be induced through introduction of an intervening material layer between two III-N material layers. Where a light emitting structure includes a quantum well (QW) structure between two Group III-Nitride polarization junctions, a 2D electron gas (2DEG) induced at a first polarization junction and/or a 2D hole gas (2DHG) induced at a second polarization junction on either side of the QW structure may supply carriers to the QW structure. An improvement in quantum efficiency may be achieved where the intervening material layer further functions as a barrier to carrier recombination outside of the QW structure.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic
  • Patent number: 11791221
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors integrated on the same support structure as non-III-N transistors (e.g., Si-based transistors), using semiconductor layer transfer. In one aspect, a non-III-N transistor may be integrated with an III-N transistor by, first, depositing a semiconductor material layer, a portion of which will later serve as a channel material of the non-III-N transistor, on a support structure different from that on which the III-N semiconductor material for the III-N transistor is provided, and then performing layer transfer of said semiconductor material layer to the support structure with the III-N material, e.g., by oxide-to-oxide bonding, advantageously enabling implementation of both types of transistors on a single support structure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Paul B. Fischer
  • Patent number: 11784121
    Abstract: Disclosed herein are integrated circuit (IC) components with dummy structures, as well as related methods and devices. For example, in some embodiments, an IC component may include a dummy structure in a metallization stack. The dummy structure may include a dummy material having a higher Young's modulus than an interlayer dielectric of the metallization stack.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Nicholas James Harold McKubre, Richard Farrington Vreeland, Sansaptak Dasgupta
  • Patent number: 11777022
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed for transistors including first and second semiconductor materials between source and drain regions. An example apparatus includes a first semiconductor material and a second semiconductor material adjacent the first semiconductor material. The example apparatus further includes a source proximate the first semiconductor material and spaced apart from the second semiconductor material. The example apparatus also includes a drain proximate the second semiconductor material and spaced apart from the first semiconductor material. The example apparatus includes a gate located between the source and the drain.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then
  • Patent number: 11757027
    Abstract: Embodiments include a transistor and methods of forming such transistors. In an embodiment, the transistor comprises a semiconductor substrate, a barrier layer over the semiconductor substrate; a polarization layer over the barrier layer, an insulating layer over the polarization layer, a gate electrode through the insulating layer and the polarization layer, a spacer along sidewalls of the gate electrode, and a gate dielectric between the gate electrode and the barrier layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann C. Rode, Paul Fischer, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11728346
    Abstract: A device including a III-N material is described. In an example, the device has a terminal structure with a central body and a first plurality of fins, and a second plurality of fins, opposite the first plurality of fins. A polarization charge inducing layer including a III-N material in the terminal structure. A gate electrode is disposed above and on a portion of the polarization charge inducing layer. A source structure is on the polarization charge inducing layer and on sidewalls of the first plurality of fins. A drain structure is on the polarization charge inducing layer and on sidewalls of the second plurality of fins. The device further includes a source structure and a drain structure on opposite sides of the gate electrode and a source contact on the source structure and a drain contact on the drain structure.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: August 15, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta
  • Patent number: 11715790
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors implementing various means by which their threshold voltage it tuned. In some embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included in a gate stack of the transistor. In other embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included between a gate stack and a III-N channel stack of the transistor. Including doped semiconductor or fixed charge materials either in the gate stack or between the gate stack and the III-N channel stack of III-N transistors adds charges, which affects the amount of 2DEG and, therefore, affects the threshold voltages of these transistors.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: August 1, 2023
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Marko Radosavljevic, Sansaptak Dasgupta, Yang Cao, Han Wui Then, Johann Christian Rode, Rahul Ramaswamy, Walid M. Hafez, Paul B. Fischer
  • Patent number: 11715791
    Abstract: A semiconductor-on-insulator (SOI) substrate with a compliant substrate layer advantageous for seeding an epitaxial III-N semiconductor stack upon which III-N devices (e.g., III-N HFETs) may be formed. The compliant layer may be (111) silicon, for example. The SOI substrate may further include another layer that may have one or more of lower electrical resistivity, greater thickness, or a different crystal orientation relative to the compliant substrate layer. A SOI substrate may include a (100) silicon layer advantageous for integrating Group IV devices (e.g., Si FETs), for example. To reduce parasitic coupling between an HFET and a substrate layer of relatively low electrical resistivity, one or more layers of the substrate may be removed within a region below the HFETs. Once removed, the resulting void may be backfilled with another material, or the void may be sealed, for example during back-end-of-line processing.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 1, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Kevin Lin, Paul Fischer
  • Patent number: 11715799
    Abstract: Methods and apparatus to form silicon-based transistors on group III-nitride materials using aspect ratio trapping are disclosed. An example integrated circuit includes a group III-nitride substrate and a fin of silicon formed on the group III-nitride substrate. The integrated circuit further includes a first transistor formed on the fin of silicon and a second transistor formed on the group III-nitride substrate.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: August 1, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11710765
    Abstract: A method for forming non-planar capacitors of desired dimensions is disclosed. The method is based on providing a three-dimensional structure of a first material over a substrate, enclosing the structure with a second material that is sufficiently etch-selective with respect to the first material, and then performing a wet etch to remove most of the first material but not the second material, thus forming a cavity within the second material. Shape and dimensions of the cavity are comparable to those desired for the final non-planar capacitor. At least one electrode of a capacitor may then be formed within the cavity. Using the etch selectivity of the first and second materials advantageously allows applying wet etch techniques for forming high aspect ratio openings in fabricating non-planar capacitors, which is easier and more reliable than relying on dry etch techniques.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: July 25, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11705882
    Abstract: Modern RF front end filters feature acoustic resonators in a film bulk acoustic resonator (FBAR) structure. An acoustic filter is a circuit that includes at least (and typically significantly more) two resonators. The acoustic resonator structure comprises a substrate including sidewalls and a vertical cavity between the sidewalls and two or more resonators deposited in the vertical cavity.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 18, 2023
    Assignee: Intel Corporation
    Inventors: Paul Fischer, Mark Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11699704
    Abstract: A semiconductor device comprising stacked complimentary transistors are described. In some embodiments, the semiconductor device comprises a first device comprising an enhancement mode III-N heterostructure field effect transistor (HFET), and a second device over the first device. In an example, the second device comprises a depletion mode thin film transistor. In an example, a connector is to couple a first terminal of the first device to a first terminal of the second device.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 11, 2023
    Assignee: INTEL CORPORATION
    Inventors: Van H. Le, Marko Radosavljevic, Han Wui Then, Willy Rachmady, Ravi Pillarisetty, Abhishek Sharma, Gilbert Dewey, Sansaptak Dasgupta
  • Publication number: 20230207421
    Abstract: Technologies for thermoelectric enhanced cooling on an integrated circuit die are disclosed. In the illustrative embodiment, one or more components are created on a top side of an integrated circuit die, such as a power amplifier, logic circuitry, etc. The one or more components, in use, generate heat that needs to be carried away from the components. A thermoelectric cooler can be created on a back side of the die in order to facilitate removal of heat from the component. In some embodiments, additional structures such as vias filled with high-thermal-conductivity material may be used to further improve the removal of heat from the component.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul Fischer, Walid M. Hafez
  • Publication number: 20230207446
    Abstract: Embodiments of the invention include a microelectronic device that includes a substrate, at least one dielectric layer on the substrate and a plurality of conductive lines within the at least one dielectric layer. The microelectronic device also includes an air gap structure that is located below two or more of the plurality of conductive lines.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Applicant: Tahoe Research, Ltd.
    Inventors: Han Wui THEN, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Sanaz K. GARDNER
  • Publication number: 20230197732
    Abstract: In one embodiment, an integrated circuit includes a silicon substrate, a gallium nitride (GaN) layer above the silicon substrate, a bonding layer above the GaN layer, and a silicon layer above the bonding layer. Further, the integrated circuit includes a first transistor on the GaN layer and a second transistor on the silicon layer.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul Fischer, Kimin Jun, Brennen K. Mueller
  • Patent number: 11670686
    Abstract: A method for forming III-N structures of desired nanoscale dimensions is disclosed. The method is based on, first, providing a material to serve as a shell inside which a cavity can be formed, followed by using epitaxial growth to fill the cavity with III-N semiconductor(s). Filling a cavity of specified shape and dimensions with a III-N semiconductor results in formation of a III-N structure which has shape and dimensions defined by those of the cavity in the shell, advantageously enabling formation of III-N structures on a nanometer scale without having to rely on etching of III-N materials. Ensuring that at least a part of the III-N material in the cavity is formed by lateral epitaxial overgrowth allows obtaining high quality III-N semiconductor in that part without having to grow a thick layer. Disclosed III-N nanostructures can serve as foundation for fabricating III-N device components, e.g. III-N transistors, having non-planar architecture.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then