Patents by Inventor Saravjeet Singh
Saravjeet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250022755Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: ApplicationFiled: September 26, 2024Publication date: January 16, 2025Inventors: Wei-Sheng LEI, Brad EATON, Madhava Rao YALAMANCHILI, Saravjeet SINGH, Ajay KUMAR, James M. HOLDEN
-
Patent number: 12148597Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.Type: GrantFiled: February 13, 2023Date of Patent: November 19, 2024Assignee: Applied Materials, Inc.Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
-
Patent number: 12131952Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: GrantFiled: March 2, 2023Date of Patent: October 29, 2024Assignee: Applied Materials, Inc.Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
-
Publication number: 20240350597Abstract: The invention relates to a serine protease inhibitor (Serpin) comprising a modified Reactive Centre Loop (RCL), wherein the modified RCL comprises a transmembrane serine protease 2 (TMPRSS2) inhibitory sequence having one or more amino acid substitutions at positions P4 to P1?. The invention also relates to a method of treating and/or preventing a condition in a subject in need thereof, where the TMPRSS2 activity is implicated in said condition, the method comprising administering the Serpin of the present invention.Type: ApplicationFiled: April 24, 2023Publication date: October 24, 2024Inventors: D. Margaret Worrall, Saravjeet Singh
-
Patent number: 11915911Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes.Type: GrantFiled: June 29, 2020Date of Patent: February 27, 2024Assignee: Applied Materials, Inc.Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
-
Patent number: 11834744Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.Type: GrantFiled: February 23, 2023Date of Patent: December 5, 2023Assignee: Applied Materials, Inc.Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
-
Publication number: 20230207393Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: ApplicationFiled: March 2, 2023Publication date: June 29, 2023Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
-
Publication number: 20230203657Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.Type: ApplicationFiled: February 23, 2023Publication date: June 29, 2023Applicant: Applied Materials, Inc.Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
-
Publication number: 20230197416Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.Type: ApplicationFiled: February 13, 2023Publication date: June 22, 2023Applicant: Applied Materials, Inc.Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
-
Patent number: 11637002Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.Type: GrantFiled: November 26, 2014Date of Patent: April 25, 2023Assignee: Applied Materials, Inc.Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
-
Patent number: 11621194Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: GrantFiled: December 29, 2020Date of Patent: April 4, 2023Assignee: Applied Materials, Inc.Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
-
Patent number: 11591693Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.Type: GrantFiled: February 16, 2021Date of Patent: February 28, 2023Assignee: Applied Materials, Inc.Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
-
Patent number: 11581165Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.Type: GrantFiled: January 25, 2021Date of Patent: February 14, 2023Assignee: Applied Materials, Inc.Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
-
Patent number: 11239061Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.Type: GrantFiled: April 28, 2017Date of Patent: February 1, 2022Assignee: Applied Materials, Inc.Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
-
Publication number: 20210265134Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.Type: ApplicationFiled: January 25, 2021Publication date: August 26, 2021Applicant: Applied Materials, Inc.Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
-
Publication number: 20210189564Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.Type: ApplicationFiled: February 16, 2021Publication date: June 24, 2021Applicant: Applied Materials, Inc.Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
-
Publication number: 20210134676Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: ApplicationFiled: December 29, 2020Publication date: May 6, 2021Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
-
Patent number: 10920319Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.Type: GrantFiled: January 11, 2019Date of Patent: February 16, 2021Assignee: Applied Materials, Inc.Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
-
Patent number: 10910271Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.Type: GrantFiled: May 27, 2020Date of Patent: February 2, 2021Assignee: Applied Materials, Inc.Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
-
Patent number: 10903054Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.Type: GrantFiled: December 19, 2017Date of Patent: January 26, 2021Assignee: Applied Materials, Inc.Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis