Patents by Inventor Satoko Shitagaki
Satoko Shitagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230079236Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.Type: ApplicationFiled: November 15, 2022Publication date: March 16, 2023Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei YAMAZAKI, Satoshi SEO, Nobuharu OHSAWA, Satoko SHITAGAKI, Hideko INOUE, Hiroshi KADOMA, Harue OSAKA, Kunihiko SUZUKI, Yasuhiko TAKEMURA
-
Publication number: 20220388958Abstract: To provide a light-emitting element having high luminous efficiency and to provide a light-emitting device and an electronic device which consumes low power and is driven at low voltage, a carbazole derivative represented by the general formula (1) is provided. In the formula, ?1, ?2, ?3, and ?4 each represent an arylene group having less than or equal to 13 carbon atoms; Ar1 and Ar2 each represent an aryl group having less than or equal to 13 carbon atoms; R1 represents any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group; and R2 represents any of an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group. In addition, l, m, and n are each independently 0 or 1.Type: ApplicationFiled: July 11, 2022Publication date: December 8, 2022Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Hiroko NOMURA, Harue OSAKA, Takahiro USHIKUBO, Sachiko KAWAKAMI, Satoshi SEO, Satoko SHITAGAKI
-
Patent number: 11508912Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.Type: GrantFiled: February 18, 2021Date of Patent: November 22, 2022Inventors: Shunpei Yamazaki, Satoshi Seo, Nobuharu Ohsawa, Satoko Shitagaki, Hideko Inoue, Hiroshi Kadoma, Harue Osaka, Kunihiko Suzuki, Yasuhiko Takemura
-
Publication number: 20220328784Abstract: Objects of the present invention are to provide: a light-emitting element having a long lifetime and good emission efficiency and drive voltage. One embodiment of the invention is a light-emitting element including, between an anode and a cathode, at least a stack structure in which a first layer, a second layer, and a light-emitting layer are provided in order from the anode side. The first layer includes a first organic compound and an electron-accepting compound. The second layer includes a second organic compound having a HOMO level differing from the HOMO level of the first organic compound by from ?0.2 eV to +0.2 eV. The light-emitting layer includes a third organic compound having a HOMO level differing from the HOMO level of the second organic compound by from ?0.2 eV to +0.2 eV and a light-emitting substance having a hole-trapping property with respect to the third organic compound.Type: ApplicationFiled: June 17, 2022Publication date: October 13, 2022Inventors: Satoshi SEO, Tsunenori SUZUKI, Satoko SHITAGAKI
-
Publication number: 20220006034Abstract: In a light-emitting element including an EL layer between a pair of electrodes, between an electrode functioning as an anode and a fourth layer having a light-emitting property (light-emitting layer), the EL layer includes at least a first layer having a hole-injecting property (hole-injecting layer), a second layer having a hole-transporting property (first hole-transporting layer), and a third layer having a hole-transporting property (second hole-transporting layer). The absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than the absolute value of the highest occupied molecular orbital level (HOMO level) of each of the first layer and the third layer. With such a structure, the rate of transport of holes injected from the electrode functioning as an anode is reduced and emission efficiency of the light-emitting element is improved.Type: ApplicationFiled: September 21, 2021Publication date: January 6, 2022Applicant: Semiconductor Energy Laboratory Co.,Ltd.Inventors: Satoko Shitagaki, Tsunenori SUZUKI, Satoshi SEO
-
Patent number: 11189812Abstract: In a light-emitting element including an EL layer between a pair of electrodes, between an electrode functioning as an anode and a fourth layer having a light-emitting property (light-emitting layer), the EL layer includes at least a first layer having a hole-injecting property (hole-injecting layer), a second layer having a hole-transporting property (first hole-transporting layer), and a third layer having a hole-transporting property (second hole-transporting layer). The absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than the absolute value of the highest occupied molecular orbital level (HOMO level) of each of the first layer and the third layer. With such a structure, the rate of transport of holes injected from the electrode functioning as an anode is reduced and emission efficiency of the light-emitting element is improved.Type: GrantFiled: January 10, 2018Date of Patent: November 30, 2021Inventors: Satoko Shitagaki, Tsunenori Suzuki, Satoshi Seo
-
Patent number: 11183644Abstract: A light-emitting element which has low driving voltage and high emission efficiency is provided. The light-emitting element includes, between a pair of electrodes, a hole-transport layer and a light-emitting layer over the hole-transport layer. The light-emitting layer contains a first organic compound having an electron-transport property, a second organic compound having a hole-transport property, and a light-emitting third organic compound converting triplet excitation energy into light emission. A combination of the first organic compound and the second organic compound forms an exciplex. The hole-transport layer contains at least a fourth organic compound whose HOMO level is lower than or equal to that of the second organic compound and a fifth organic compound whose HOMO level is higher than that of the second organic compound.Type: GrantFiled: March 16, 2020Date of Patent: November 23, 2021Inventors: Hiromi Seo, Satoshi Seo, Satoko Shitagaki
-
Publication number: 20210305530Abstract: Provided is a light-emitting element with high external quantum efficiency, or a light-emitting element with a long lifetime. The light-emitting element includes, between a pair of electrodes, a light-emitting layer including a guest material and a host material, in which an emission spectrum of the host material overlaps with an absorption spectrum of the guest material, and phosphorescence is emitted by conversion of an excitation energy of the host material into an excitation energy of the guest material. By using the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the energy smoothly transfers from the host material to the guest material, so that the energy transfer efficiency of the light-emitting element is high. Accordingly, a light-emitting element with high external quantum efficiency can be achieved.Type: ApplicationFiled: June 3, 2021Publication date: September 30, 2021Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Satoko SHITAGAKI, Satoshi SEO, Nobuharu OHSAWA, Hideko INOUE, Masahiro TAKAHASHI, Kunihiko SUZUKI
-
Publication number: 20210277305Abstract: A light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a LUMO level of greater than or equal to ?3.5 eV and less than or equal to ?2.5 eV, and the second compound is an organic compound having a pyrimidine skeleton. The light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a diazine skeleton, and the second compound is an organic compound having a pyrimidine skeleton.Type: ApplicationFiled: May 14, 2021Publication date: September 9, 2021Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Kyoko Takeda, Harue Osaka, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo, Hiromi Seo
-
Publication number: 20210226146Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having low drive voltage is provided. Provided is a light-emitting element which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes. A combination of the first organic compound and the second organic compound forms an exciplex (excited complex). An emission spectrum of the exciplex overlaps with an absorption band located on the longest wavelength side of an absorption spectrum of the phosphorescent compound. A peak wavelength of the emission spectrum of the exciplex is longer than or equal to a peak wavelength of the absorption band located on the longest wavelength side of the absorption spectrum of the phosphorescent compound.Type: ApplicationFiled: April 5, 2021Publication date: July 22, 2021Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Satoshi Seo, Satoko Shitagaki, Nobuharu Ohsawa, Hideko Inoue, Kunihiko Suzuki
-
Patent number: 11038135Abstract: Provided is a light-emitting element with high external quantum efficiency, or a light-emitting element with a long lifetime. The light-emitting element includes, between a pair of electrodes, a light-emitting layer including a guest material and a host material, in which an emission spectrum of the host material overlaps with an absorption spectrum of the guest material, and phosphorescence is emitted by conversion of an excitation energy of the host material into an excitation energy of the guest material. By using the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the energy smoothly transfers from the host material to the guest material, so that the energy transfer efficiency of the light-emitting element is high. Accordingly, a light-emitting element with high external quantum efficiency can be achieved.Type: GrantFiled: February 25, 2019Date of Patent: June 15, 2021Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoko Shitagaki, Satoshi Seo, Nobuharu Ohsawa, Hideko Inoue, Masahiro Takahashi, Kunihiko Suzuki
-
Publication number: 20210175429Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.Type: ApplicationFiled: February 18, 2021Publication date: June 10, 2021Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Satoshi Seo, Nobuharu Ohsawa, Satoko Shitagaki, Hideko Inoue, Hiroshi Kadoma, Harue Osaka, Kunihiko Suzuki, Yasuhiko Takemura
-
Patent number: 11008510Abstract: A light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a LUMO level of greater than or equal to ?3.5 eV and less than or equal to ?2.5 eV, and the second compound is an organic compound having a pyrimidine skeleton. The light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a diazine skeleton, and the second compound is an organic compound having a pyrimidine skeleton.Type: GrantFiled: May 22, 2017Date of Patent: May 18, 2021Inventors: Kyoko Takeda, Harue Osaka, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo, Hiromi Seo
-
Publication number: 20210119150Abstract: A light-emitting element which has low driving voltage and high emission efficiency is provided. The light-emitting element includes, between a pair of electrodes, a hole-transport layer and a light-emitting layer over the hole-transport layer. The light-emitting layer contains a first organic compound having an electron-transport property, a second organic compound having a hole-transport property, and a light-emitting third organic compound converting triplet excitation energy into light emission. A combination of the first organic compound and the second organic compound forms an exciplex. The hole-transport layer contains at least a fourth organic compound whose HOMO level is lower than or equal to that of the second organic compound and a fifth organic compound whose HOMO level is higher than that of the second organic compound.Type: ApplicationFiled: December 30, 2020Publication date: April 22, 2021Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hiromi Seo, Satoshi Seo, Satoko Shitagaki
-
Patent number: 10978661Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having low drive voltage is provided. Provided is a light-emitting element which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes. A combination of the first organic compound and the second organic compound forms an exciplex (excited complex). An emission spectrum of the exciplex overlaps with an absorption band located on the longest wavelength side of an absorption spectrum of the phosphorescent compound. A peak wavelength of the emission spectrum of the exciplex is longer than or equal to a peak wavelength of the absorption band located on the longest wavelength side of the absorption spectrum of the phosphorescent compound.Type: GrantFiled: February 11, 2019Date of Patent: April 13, 2021Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Seo, Satoko Shitagaki, Nobuharu Ohsawa, Hideko Inoue, Kunihiko Suzuki
-
Patent number: 10930852Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.Type: GrantFiled: December 5, 2019Date of Patent: February 23, 2021Inventors: Shunpei Yamazaki, Satoshi Seo, Nobuharu Ohsawa, Satoko Shitagaki, Hideko Inoue, Hiroshi Kadoma, Harue Osaka, Kunihiko Suzuki, Yasuhiko Takemura
-
Patent number: 10910568Abstract: A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.Type: GrantFiled: April 27, 2020Date of Patent: February 2, 2021Inventors: Takeyoshi Watabe, Satoko Shitagaki, Kunihiko Suzuki, Harue Osaka, Satomi Mitsumori, Satoshi Seo
-
Patent number: 10862042Abstract: An object is to provide a light-emitting element having high light-emission efficiency by provision of a novel fluorene derivative as represented by General Formula (G1) below In the formula, R1 to R8 independently represent any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group. Further, ?1 to ?4 independently represent any of a substituted or unsubstituted arylene group having 6 to 12 carbon atoms. Furthermore, Ar1 and Ar2 independently represent any of an aryl group having 6 to 13 carbon atoms in a ring and Ar3 represents an alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. J, k, m, and n each independently represent 0 or 1.Type: GrantFiled: December 2, 2019Date of Patent: December 8, 2020Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Harue Osaka, Satoko Shitagaki, Tsunenori Suzuki, Nobuharu Ohsawa, Sachiko Kawakami, Satoshi Seo
-
Patent number: 10756287Abstract: Objects of the present invention are to provide: a light-emitting element having a long lifetime and good emission efficiency and drive voltage. One embodiment of the invention is a light-emitting element including, between an anode and a cathode, at least a stack structure in which a first layer, a second layer, and a light-emitting layer are provided in order from the anode side. The first layer includes a first organic compound and an electron-accepting compound. The second layer includes a second organic compound having a HOMO level differing from the HOMO level of the first organic compound by from ?0.2 eV to +0.2 eV. The light-emitting layer includes a third organic compound having a HOMO level differing from the HOMO level of the second organic compound by from ?0.2 eV to +0.2 eV and a light-emitting substance having a hole-trapping property with respect to the third organic compound.Type: GrantFiled: June 22, 2017Date of Patent: August 25, 2020Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Seo, Tsunenori Suzuki, Satoko Shitagaki
-
Publication number: 20200259105Abstract: A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.Type: ApplicationFiled: April 27, 2020Publication date: August 13, 2020Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Takeyoshi Watabe, Satoko SHITAGAKI, Kunihiko SUZUKI, Harue OSAKA, Satomi MITSUMORI, Satoshi SEO