Patents by Inventor Satoko Shitagaki

Satoko Shitagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10134996
    Abstract: It is an object of the present invention to provide a composite material that can be used for manufacturing a heat-resistant light-emitting element, provide a composite material that can be used for manufacturing a heat-resistant light-emitting element that can be driven with stability for a long period of time, and further, provide a composite material that can be used for manufacturing a light-emitting element that easily prevents short circuit between electrodes and uses less power. The present invention provides a composite material that has a first metal oxide skeleton including a first metal atom and an organic compound that is bound to the first metal atom by forming a chelate, where the first metal oxide exhibits an electron accepting property to the organic compound.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 20, 2018
    Assignee: Semicondcutor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Harue Nakashima, Ryoji Nomura, Satoko Shitagaki
  • Publication number: 20180269410
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element is provided which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes, in which a combination of the first organic compound and the second organic compound forms an exciplex (excited complex). The light-emitting element transfers energy by utilizing an overlap between the emission spectrum of the exciplex and the absorption spectrum of the phosphorescent compound and thus has high energy transfer efficiency. Therefore, a light-emitting element having high external quantum efficiency can be obtained.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Satoko SHITAGAKI, Satoshi SEO, Nobuharu OHSAWA, Hideko INOUE, Kunihiko SUZUKI
  • Patent number: 10079350
    Abstract: To provide a novel organometallic complex, and light emitting elements, light emitting devices, and electronic devices which include the organometallic complex. In addition, to provide a composition in which the organometallic complex is dissolved and to provide a method for manufacturing light emitting elements using the composition. An organometallic complex has high solubility in a solvent. In the organometallic complex, the ligand including a pyrazine skeleton is bound to an atom belonging to Group 9 (Co, Rh, or Ir) or an atom belonging to Group 10 (Ni, Pd, or Pt). In addition, the light emission efficiency is high. Therefore, the organometallic complex is preferably used for manufacturing a light emitting element.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Satoko Shitagaki, Satoshi Seo
  • Patent number: 10062867
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains at least a phosphorescent compound, a first organic compound (host material) having an electron-transport property, and a second organic compound (assist material) having a hole-transport property. The light-emitting layer has a stacked-layer structure including a first light-emitting layer and a second light-emitting layer, and the first light-emitting layer contains a higher proportion of the second organic compound than the second light-emitting layer. In the light-emitting layer (the first light-emitting layer and the second light-emitting layer), a combination of the first organic compound and the second organic compound forms an exciplex.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: August 28, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Seo, Satoko Shitagaki, Satoshi Seo, Takahiro Ushikubo, Toshiki Sasaki, Shogo Uesaka
  • Publication number: 20180212154
    Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi SEO, Nobuharu OHSAWA, Satoko SHITAGAKI, Hideko INOUE, Hiroshi KADOMA, Harue OSAKA, Kunihiko SUZUKI, Yasuhiko TAKEMURA
  • Publication number: 20180159062
    Abstract: In a light-emitting element including an EL layer between a pair of electrodes, between an electrode functioning as an anode and a fourth layer having a light-emitting property (light-emitting layer), the EL layer includes at least a first layer having a hole-injecting property (hole-injecting layer), a second layer having a hole-transporting property (first hole-transporting layer), and a third layer having a hole-transporting property (second hole-transporting layer). The absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than the absolute value of the highest occupied molecular orbital level (HOMO level) of each of the first layer and the third layer. With such a structure, the rate of transport of holes injected from the electrode functioning as an anode is reduced and emission efficiency of the light-emitting element is improved.
    Type: Application
    Filed: January 10, 2018
    Publication date: June 7, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Tsunenori Suzuki, Satoshi Seo
  • Patent number: 9985218
    Abstract: A light-emitting element with low drive voltage, a light-emitting element with high current efficiency, and/or a light-emitting element with a long lifetime are/is provided. Specifically, a light-emitting element with low drive voltage, a light-emitting element with high current efficiency, and/or a light-emitting element with a long lifetime are/is provided by the use of an organic compound with a dibenzo[f,h]quinoxaline skeleton in a light-emitting layer.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 29, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Hiroshi Kadoma, Yasushi Kitano, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo
  • Patent number: 9985223
    Abstract: Provided is a novel substance that can emit phosphorescence. Alternatively, provided is a novel substance with high emission efficiency. An organometallic complex in which a 4-arylpyrimidine derivative is a ligand and iridium is a central metal is provided. Specifically, an organometallic complex having a structure represented by a general formula (G1) is provided. In the general formula (G1), R1 represents a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, R2 represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted phenyl group, R3 represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and Ar1 represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 29, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya Yamaguchi, Satoko Shitagaki, Takahiro Ushikubo, Satoshi Seo, Yui Yamada, Hiromi Nowatari
  • Patent number: 9972794
    Abstract: Disclosed is an organometallic complex capable of variable phosphorescence characteristics and yellow emission at high luminance. The organometallic complex has a structure represented by a formula (G1), where at least one of R4, R5, R6, and R7 is a phenoxy group, M is a Group 9 metal or a Group 10 metal, and n is 2 when the central metal M is a Group 9 element, or n is 1 when the central metal M is a Group 10 element.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 15, 2018
    Assignee: Semiconductor Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Nobuharu Ohsawa, Satoko Shitagaki, Satoshi Seo
  • Patent number: 9960368
    Abstract: Provided is a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, A represents any of a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted carbazolyl group, R11 to R19 separately represent any of hydrogen, an alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and Ar represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: May 1, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Kadoma, Yasushi Kitano, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo
  • Patent number: 9929350
    Abstract: A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 27, 2018
    Assignee: Semiconducor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo, Nobuharu Ohsawa, Satoko Shitagaki, Hideko Inoue, Hiroshi Kadoma, Harue Osaka, Kunihiko Suzuki, Yasuhiko Takemura
  • Patent number: 9876187
    Abstract: In a light-emitting element including an EL layer between a pair of electrodes, between an electrode functioning as an anode and a fourth layer having a light-emitting property (light-emitting layer), the EL layer includes at least a first layer having a hole-injecting property (hole-injecting layer), a second layer having a hole-transporting property (first hole-transporting layer), and a third layer having a hole-transporting property (second hole-transporting layer). The absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than the absolute value of the highest occupied molecular orbital level (HOMO level) of each of the first layer and the third layer. With such a structure, the rate of transport of holes injected from the electrode functioning as an anode is reduced and emission efficiency of the light-emitting element is improved.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: January 23, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Tsunenori Suzuki, Satoshi Seo
  • Publication number: 20180009751
    Abstract: To provide a light-emitting element having high luminous efficiency and to provide a light-emitting device and an electronic device which consumes low power and is driven at low voltage, a carbazole derivative represented by the general formula (1) is provided. In the formula, ?1, ?2, ?3, and ?4 each represent an arylene group having less than or equal to 13 carbon atoms; Ar1 and Ar2 each represent an aryl group having less than or equal to 13 carbon atoms; R1 represents any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group; and R2 represents any of an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group. In addition, l, m, and n are each independently 0 or 1.
    Type: Application
    Filed: September 22, 2017
    Publication date: January 11, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroko Nomura, Harue Osaka, Takahiro Ushikubo, Sachiko Kawakami, Satoshi Seo, Satoko Shitagaki
  • Publication number: 20170365797
    Abstract: To provide a light-emitting element with high emission efficiency. In a light-emitting element including an organic compound between a pair of electrodes, the molecular weight X of the organic compound is 450 or more and 1500 or less, and the absorption edge of the organic compound is at 380 nm or more. By liquid chromatography mass spectrometry in a positive mode in which an argon gas is made to collide with the organic compound subjected to separation using a liquid chromatograph at any energy higher than or equal to 1 eV and lower than or equal to 30 eV, a product ion is detected at least around m/z=(X?240).
    Type: Application
    Filed: September 6, 2017
    Publication date: December 21, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Satoko Shitagaki, Nobuharu Ohsawa
  • Publication number: 20170365782
    Abstract: An object is to provide a light-emitting element having high light-emission efficiency by provision of a novel fluorene derivative as represented by General Formula (G1) below. In the formula, R1 to R8 independently represent any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group. Further, ?1 to ?4 independently represent any of a substituted or unsubstituted arylene group having 6 to 12 carbon atoms. Furthermore, Ar1 and Ar2 independently represent any of an aryl group having 6 to 13 carbon atoms in a ring and Ar3 represents an alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. J, k, m, and n each independently represent 0 or 1.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 21, 2017
    Inventors: Harue OSAKA, Satoko SHITAGAKI, Tsunenori SUZUKI, Nobuharu OHSAWA, Sachiko KAWAKAMI, Satoshi SEO
  • Patent number: 9843000
    Abstract: Provided is a novel heterocyclic compound which can be used as a host material for dispersing a light-emitting material in a light-emitting layer of a light-emitting element. Further provided is a light-emitting element which is driven at a low voltage and has high current efficiency. By including the light-emitting element, a light-emitting device, an electronic device, and a lighting device each with reduced power consumption are provided. The light-emitting element contains a compound in which a dibenzo[f,h]quinoline ring and a hole-transport skeleton are bonded through an arylene group. The light-emitting device, the electronic device, and the lighting device each including the light-emitting element are provided. The light-emitting element contains a heterocyclic compound having a structure represented by the following general formula (G1).
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: December 12, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Kadoma, Kaori Ogita, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo
  • Publication number: 20170352829
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains at least a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 7, 2017
    Inventors: Hiromi SEO, Satoko SHITAGAKI, Satoshi SEO, Takahiro USHIKUBO, Toshiki SASAKI, Shogo UESAKA
  • Publication number: 20170294617
    Abstract: Objects of the present invention are to provide: a light-emitting element having a long lifetime and good emission efficiency and drive voltage. One embodiment of the invention is a light-emitting element including, between an anode and a cathode, at least a stack structure in which a first layer, a second layer, and a light-emitting layer are provided in order from the anode side. The first layer includes a first organic compound and an electron-accepting compound. The second layer includes a second organic compound having a HOMO level differing from the HOMO level of the first organic compound by from ?0.2 eV to +0.2 eV. The light-emitting layer includes a third organic compound having a HOMO level differing from the HOMO level of the second organic compound by from ?0.2 eV to +0.2 eV and a light-emitting substance having a hole-trapping property with respect to the third organic compound.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 12, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi SEO, Tsunenori SUZUKI, Satoko SHITAGAKI
  • Publication number: 20170279063
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having low drive voltage is provided. Provided is a light-emitting element which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes. A combination of the first organic compound and the second organic compound forms an exciplex (excited complex). An emission spectrum of the exciplex overlaps with an absorption band located on the longest wavelength side of an absorption spectrum of the phosphorescent compound. A peak wavelength of the emission spectrum of the exciplex is longer than or equal to a peak wavelength of the absorption band located on the longest wavelength side of the absorption spectrum of the phosphorescent compound.
    Type: Application
    Filed: April 20, 2017
    Publication date: September 28, 2017
    Inventors: Satoshi SEO, Satoko SHITAGAKI, Nobuharu OHSAWA, Hideko INOUE, Kunihiko SUZUKI
  • Patent number: 9761812
    Abstract: To provide a light-emitting element with high emission efficiency. In a light-emitting element including an organic compound between a pair of electrodes, the molecular weight X of the organic compound is 450 or more and 1500 or less, and the absorption edge of the organic compound is at 380 nm or more. By liquid chromatography mass spectrometry in a positive mode in which an argon gas is made to collide with the organic compound subjected to separation using a liquid chromatograph at any energy higher than or equal to 1 eV and lower than or equal to 30 eV, a product ion is detected at least around m/z=(X?240).
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: September 12, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Satoko Shitagaki, Nobuharu Ohsawa