Patents by Inventor Satyarth Suri

Satyarth Suri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150333252
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20150243336
    Abstract: Switching current in Spin-Transfer Torque Memory (STTM) can be decreased. A magnetic memory cell is driven with a first pulse on a write line of the memory cell to heat the cell. The cell is then driven with a second pulse on the write line to set the state of the cell.
    Type: Application
    Filed: June 10, 2013
    Publication date: August 27, 2015
    Inventors: Elijah V. Karpov, Brian S. Doyle, Kaan Oguz, Satyarth Suri, Robert S. Chau, Charles S. Kuo, Mark L. Doczy, David L. Kencke
  • Patent number: 9105839
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 11, 2015
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20150091110
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and damping are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A first free magnetic layer is disposed above the dielectric layer. A second free magnetic layer is magnetically coupled with the first free magnetic layer.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Charles C. Kuo, Kaan Oguz, Mark L. Doczy, Brian S. Doyle, Satyarth Suri, Robert S. Chau, David L. Kencke, Roksana Golizadeh Mojarad, Anurag Chaudhry
  • Patent number: 8913422
    Abstract: Switching current in Spin-Transfer Torque Memory (STTM) can be decreased. A magnetic memory cell is driven with a first pulse on a write line of the memory cell to heat the cell. The cell is then driven with a second pulse on the write line to set the state of the cell.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 16, 2014
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Kaan Oguz, Satyarth Suri, Robert S. Chau, Charles C. Kuo, Mark L. Doczy, David L. Kencke
  • Publication number: 20140329337
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Patent number: 8785907
    Abstract: An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Niti Goel, Niloy Mukherjee, Seung Hoon Sung, Van H. Le, Matthew V. Metz, Jack T. Kavalieros, Ravi Pillarisetty, Sanaz K. Gardner, Sansaptak Dasgupta, Willy Rachmady, Benjamin Chu-Kung, Marko Radosavljevic, Gilbert Dewey, Marc C. French, Jessica Kachian, Satyarth Suri, Robert S. Chau
  • Patent number: 8786040
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Patent number: 8785909
    Abstract: Non-planar semiconductor devices having channel regions with low band-gap cladding layers are described. For example, a semiconductor device includes a vertical arrangement of a plurality of nanowires disposed above a substrate. Each nanowire includes an inner region having a first band gap and an outer cladding layer surrounding the inner region. The cladding layer has a second, lower band gap. A gate stack is disposed on and completely surrounds the channel region of each of the nanowires. The gate stack includes a gate dielectric layer disposed on and surrounding the cladding layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the channel regions of the nanowires.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung, Dipanjan Basu, Sanaz K. Gardner, Satyarth Suri, Ravi Pillarisetty, Niloy Mukherjee, Han Wui Then, Robert S. Chau
  • Publication number: 20140175583
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20140175378
    Abstract: An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Niti Goel, Niloy Mukherjee, Seung Hoon Sung, Van Le, Matthew Metz, Jack Kavalieros, RAVI PILLARISETTY, Sanaz Gardner, SANSAPTAK DASGUPTA, Willy Rachmady, BENJAMIN CHU-KUNG, MARKO RADOSAVLJEVIC, Gilbert Dewey, Marc French, JESSICA KACHIAN, SATYARTH SURI, Robert Chau
  • Publication number: 20140092677
    Abstract: Switching current in Spin-Transfer Torque Memory (STTM) can be decreased. A magnetic memory cell is driven with a first pulse on a write line of the memory cell to heat the cell. The cell is then driven with a second pulse on the write line to set the state of the cell.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Elijah V. Karpov, Brian S. Doyle, Kaan Oguz, Satyarth Suri, Robert S. Chau, Charles C. Kuo, Mark L. Doczy
  • Publication number: 20140084239
    Abstract: Non-planar semiconductor devices having channel regions with low band-gap cladding layers are described. For example, a semiconductor device includes a vertical arrangement of a plurality of nanowires disposed above a substrate. Each nanowire includes an inner region having a first band gap and an outer cladding layer surrounding the inner region. The cladding layer has a second, lower band gap. A gate stack is disposed on and completely surrounds the channel region of each of the nanowires. The gate stack includes a gate dielectric layer disposed on and surrounding the cladding layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the channel regions of the nanowires.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung, Dipanjan Basu, Sanaz K. Gardner, Satyarth Suri, Ravi Pillarisetty, Niloy Mukherjee, Han Wui Then, Robert S. Chau
  • Publication number: 20130234290
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 12, 2013
    Inventors: Steven Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 8519510
    Abstract: Semiconductor structures having integrated quadruple-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded quadruple-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A quadruple arrangement of metal plates is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the quadruple arrangement of metal plates. A top metal plate layer is disposed on and conformal with the second dielectric layer.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: August 27, 2013
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Uday Shah, Satyarth Suri, Ramanan V. Chebiam
  • Patent number: 8441057
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Publication number: 20120326274
    Abstract: Semiconductor structures having integrated quadruple-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded quadruple-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A quadruple arrangement of metal plates is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the quadruple arrangement of metal plates. A top metal plate layer is disposed on and conformal with the second dielectric layer.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: Brian S. Doyle, Uday Shah, Satyarth Suri, Ramanan V. Chebiam
  • Publication number: 20120235274
    Abstract: Semiconductor structures having integrated double-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded double-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A U-shaped metal plate is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the U-shaped metal plate. A top metal plate layer is disposed on and conformal with the second dielectric layer.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 20, 2012
    Inventors: Brian S. Doyle, Charles C. Kuo, Nick Lindert, Uday Shah, Satyarth Suri, Robert S. Chau
  • Publication number: 20110134583
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 9, 2011
    Inventors: Steve J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 7927959
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 19, 2011
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha