Patents by Inventor Scott A. Stevenson

Scott A. Stevenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080293988
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott F. Mitchell, Alla K. Khanmamedova, Scott A. Stevenson, Jim Vartuli
  • Publication number: 20080293987
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a germanium zeolite, such as Ge-ZSM-5, on which at least two metals, platinum and at least one other metal selected from Group 7, Group 8, Group 9, Group 10 and tin, are deposited on the germanium zeolite. Examples of the other metal are iridium, rhenium, palladium, ruthenium, rhodium, iron, cobalt and tin. The catalyst is prepared by synthesizing a germanium zeolite; depositing platinum and at least one other metal on the germanium zeolite; and calcining after preparation of the zeolite, before depositing the metals or after depositing the metals. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes, olefins and mixtures thereof having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Inventors: Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson, Gopalakrishnan G. Juttu
  • Publication number: 20080293990
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a medium pore germanium zeolite, a germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). At least one metal selected from Group 10 is deposited on the medium pore zeolite and, optionally on the germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst is prepared by synthesizing a medium pore zeolite, an aluminophosphate (AlPO) or a silicoaluminophosphate (SAPO) with germanium incorporated into the framework and calcining the medium pore germanium zeolite, germanium aluminophosphate (AlPO) or germanium silicoaluminophosphate (SAPO). At least one metal may be deposited on the germanium zeolite, germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO).
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott A. Stevenson, Alla K. Khanmamedova, Dustin B. Farmer, Scott F. Mitchell, Jim Vartuli
  • Publication number: 20080255398
    Abstract: This invention relates to a process for the aromatization of C6 to C12 alkanes, such as hexane, heptane and octane, to aromatics, such as benzene, ethyl benzene, toluene and xylenes, with a germanium-containing zeolite catalyst. The catalyst is a non-acidic aluminum-silicon-germanium zeolite on which a noble metal, such as platinum, has been deposited. The zeolite structure may be of MFI, BEA, MOR, LTL or MTT. The zeolite is made non-acidic by being base-exchanged with an alkali metal or alkaline earth metal, such as cesium, potassium, sodium, rubidium, barium, calcium, magnesium and mixtures thereof, to reduce acidity. The catalyst is sulfur tolerant and may be pretreated with a sulfur compound, i.e., sulfided. The hydrocarbon feed may contain sulfur up to 1000 ppm. The present invention could be applicable to a feedstream which is predominantly paraffinic and/or low in naphthenes. Lowering the hydrogen to hydrocarbon ratio increases conversion and aromatics selectivity.
    Type: Application
    Filed: April 12, 2007
    Publication date: October 16, 2008
    Inventors: Scott A. Stevenson, Dustin B. Farmer, Scott F. Mitchell, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Paul E. Ellis
  • Publication number: 20080154079
    Abstract: This invention relates to a process for regeneration of a zeolite catalyst, specifically an aluminosilicate zeolite with germanium substituted in the framework for silicon and with platinum deposited on the zeolite. The catalyst may be used in a process for aromatization of alkanes, specifically C2-C8 alkanes. The regeneration process 1) removes coke and sulfur from the catalyst via oxidation, 2) redisperses platinum on the surface of the catalyst via chlorine gas, 3) removes chlorine and bind Pt to the surface of the zeolite by steaming, 4) reduces the catalyst in hydrogen, and 5) optionally, resulfides the catalyst. The zeolite may be a MFI zeolite. The catalyst may be bound with an inert material which does not act as a binding site for platinum during the regeneration process, for example, silica.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Paul E. Ellis, Gopalakrishnan G. Juttu, Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson
  • Publication number: 20080128293
    Abstract: A soil remediation system includes an electrochemical cell that is configured to provide increased mass transfer and a decreased diffusion layer between the electrodes to thereby allow formation of a homogenous lead deposit that is substantially free of dendrite formation and easily removed.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 5, 2008
    Inventors: Samaresh Mohanta, Brian J. Dougherty, Scott Stevenson
  • Patent number: 7368043
    Abstract: A soil remediation system includes an electrochemical cell that is configured to provide increased mass transfer and a decreased diffusion layer between the electrodes to thereby allow formation of a homogenous lead deposit that is substantially free of dendrite formation and easily removed.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: May 6, 2008
    Assignee: Applied Intellectual Capital
    Inventors: Samaresh Mohanta, Brian J. Dougherty, Scott Stevenson
  • Patent number: 7361791
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 22, 2008
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
  • Publication number: 20070249491
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.
    Type: Application
    Filed: May 24, 2007
    Publication date: October 25, 2007
    Inventors: Wugeng Liang, Scott Stevenson, James Kauffman, John Ledford, Joseph Linzer
  • Publication number: 20070238904
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.
    Type: Application
    Filed: May 24, 2007
    Publication date: October 11, 2007
    Inventors: Wugeng Liang, Scott Stevenson, James Kauffman, John Ledford, Joseph Linzer
  • Patent number: 7273829
    Abstract: The invention is a supported or bound heteropoly acid catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition has an active heteropoly acid component containing molybdenum, vanadium, phosphorus and cesium and an inert heteropoly acid component containing molybdenum, phosphorus and cesium, potassium, rubidium or sodium at a relative molybdenum:cesium/potassium/rubidium/sodium molar ratio of above about 12:2. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, contacting the heteropoly acid compounds to form a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: September 25, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Joseph R. Linzer
  • Publication number: 20070149806
    Abstract: The invention is a supported or bound heteropoly acid catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition has an active heteropoly acid component containing molybdenum, vanadium, phosphorus and cesium and an inert heteropoly acid component containing molybdenum, phosphorus and cesium, potassium, rubidium or sodium at a relative molybdenum:cesium/potassium/rubidium/sodium molar ratio of above about 12:2. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, contacting the heteropoly acid compounds to form a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Wugeng Liang, Scott Stevenson, Joseph Linzer
  • Patent number: 7232788
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3–5.0, c:a=2.0–6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95–1.10.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 19, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
  • Publication number: 20070106091
    Abstract: An integrated facility is disclosed for simultaneous production of butanal and methacrylic acid products where the facility utilizes a mixed methacrolein and isobutanal stream to make methacrylic acid. The facility is also designed to utilize downstream n-butanal products such as n-butanol and/or 2-ethyl-hexanol to make butyl-methacrylates and 2-ethyl-hexyl-methacrylate. A method is also disclosed which integrates the production of butanal derived products and methacrylic acid derived products.
    Type: Application
    Filed: July 25, 2005
    Publication date: May 10, 2007
    Inventors: Scott Stevenson, Wugeng Liang
  • Publication number: 20070021296
    Abstract: A heteropolyacid catalyst for oxidation of isobutyraldehyde, methacrolein or mixtures or combinations thereof to methacrylic acid is disclosed where the heteropolyacid catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), and a first component including bismuth (Bi) and/or boron (B). The heteropolyacid catalyst can also optionally include a second component including potassium (K), rubidium (Rb), cesium (Cs), and/or thallium (Tl) and optionally a third component including antimony (Sb), cerium (Ce), niobium (Nb), indium (In), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), arsenic (As), silver (Ag), zinc (Zn), germanium (Ge), gallium (Ga), zirconium (Zr), magnesium (Mg), barium (Ba), lead (Pb), tin (Sn), titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), tungsten (W), and/or lanthanum (La). The heteropolyacid catalyst can also include an ammonium-containing compound designed to increase a value of medium pores in the final heteropolyacid catalyst.
    Type: Application
    Filed: July 25, 2005
    Publication date: January 25, 2007
    Inventors: Wugeng Liang, Scott Stevenson, Angie McGuffey, Joseph Linzer
  • Publication number: 20070021629
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Ti), or mixtures or combinations thereof, where the catalyst has at least 57% medium pores and a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12. Methods for making and using such catalysts are also disclosed.
    Type: Application
    Filed: July 25, 2005
    Publication date: January 25, 2007
    Inventors: Scott Stevenson, Wugeng Liang, James Kauffman, Lixia Cai, Angie McGuffey, Joseph Linzer
  • Publication number: 20070021630
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehydes to unsaturated acids is disclosed where the catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the bismuth component was dissolved in an organic acid solution prior to adding the bismuth containing solution to a solution of the other components. Methods for making and using the catalysts are also disclosed.
    Type: Application
    Filed: July 25, 2005
    Publication date: January 25, 2007
    Inventors: Wugeng Liang, Scott Stevenson, Angie McGuffey
  • Publication number: 20070016388
    Abstract: In various embodiment of the present invention, a method for determining a mass distribution solution for a mathematical model of a part to be structurally analyzed is provided. The method includes utilizing a finite element modeling (FEM) device to generate a nodal data of a part to be structurally analyzed. The nodal data is exported into a mass distribution solution (MDS) generating device where a three dimensional graphical illustration of the nodal data is rendered on a monitor of the MDS generating device. Mass properties data relating to the part to be analyzed is then imported into the MDS generating device from a weight accounting data source (WAD). The MDS generating device includes a processor that executes a MDS algorithm to thereby generate a MDS for the nodal data based on the imported mass properties data. A three dimensional graphical illustration of the weight distribution across selected nodes of the nodal data in accordance with of the mass distribution solution is rendered on the monitor.
    Type: Application
    Filed: July 18, 2005
    Publication date: January 18, 2007
    Inventors: Bruce Shimel, Scott Stevenson
  • Patent number: 6946422
    Abstract: A process for making a catalyst containing oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals, such as tungsten, cobalt, nickel, antimony, magnesium, zinc, phosphorus, potassium, rubidium, thallium, manganese, barium, chromium, boron, sulfur, silicon, aluminum, titanium, cerium, tellurium, tin, vanadium, zirconium, lead, cadmium, copper and niobium wherein metal compounds are dissolved and then precipitated as a catalyst precursor which is calcined to form a mixed metal oxide catalyst. The process of the present invention uses an organic acid, such as acetic acid, instead of nitric acid to dissolve the bismuth compound and, optionally, other metal compounds. The catalyst synthesized by this process may be used for the production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 20, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang
  • Publication number: 20050159621
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.
    Type: Application
    Filed: March 14, 2005
    Publication date: July 21, 2005
    Inventors: Wugeng Liang, Scott Stevenson, James Kauffman, John Ledford, Joseph Linzer