Patents by Inventor Scott B. Clendenning

Scott B. Clendenning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120415
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be etched away, leaving the doped semiconductor layers as fins for a ribbon FET. A ferroelectric layer can be conformally grown on the fins, creating a high-quality ferroelectric layer above and below the fins. A gate can then be grown on the ferroelectric layer.
    Type: Application
    Filed: October 1, 2022
    Publication date: April 11, 2024
    Applicant: Intel Corporation
    Inventors: Scott B. Clendenning, Sudarat Lee, Kevin P. O'Brien, Rachel A. Steinhardt, John J. Plombon, Arnab Sen Gupta, Charles C. Mokhtarzadeh, Gauri Auluck, Tristan A. Tronic, Brandon Holybee, Matthew V. Metz, Dmitri Evgenievich Nikonov, Ian Alexander Young
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Publication number: 20240088143
    Abstract: Self-aligned gate endcap (SAGE) architectures without fin end gaps, and methods of fabricating self-aligned gate endcap (SAGE) architectures without fin end gaps, are described. In an example, an integrated circuit structure includes a semiconductor fin having a cut along a length of the semiconductor fin. A gate endcap isolation structure has a first portion parallel with the length of the semiconductor fin and is spaced apart from the semiconductor fin. The gate endcap isolation structure also has a second portion in a location of the cut of the semiconductor fin and in contact with the semiconductor fin.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Szuya S. Liao, Scott B. CLENDENNING, Jessica TORRES, Lukas BAUMGARTEL, Kiran CHIKKADI, Diane LANCASTER, Matthew V. METZ, Florian GSTREIN, Martin M. MITAN, Rami HOURANI
  • Patent number: 11923290
    Abstract: Embodiments disclosed herein include semiconductor devices with source/drain interconnects that include a barrier layer. In an embodiment the semiconductor device comprises a source region and a drain region. In an embodiment, a semiconductor channel is between the source region and the drain region, and a gate electrode is over the semiconductor channel. In an embodiment, the semiconductor device further comprises interconnects to the source region and the drain region. In an embodiment, the interconnects comprise a barrier layer, a metal layer, and a fill metal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Siddharth Chouksey, Gilbert Dewey, Nazila Haratipour, Mengcheng Lu, Jitendra Kumar Jha, Jack T. Kavalieros, Matthew V. Metz, Scott B Clendenning, Eric Charles Mattson
  • Patent number: 11901404
    Abstract: Embodiments herein describe techniques for a semiconductor device including a three dimensional capacitor. The three dimensional capacitor includes a pole, and one or more capacitor units stacked around the pole. A capacitor unit of the one or more capacitor units includes a first electrode surrounding and coupled to the pole, a dielectric layer surrounding the first electrode, and a second electrode surrounding the dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Sudipto Naskar, Manish Chandhok, Abhishek A. Sharma, Roman Caudillo, Scott B. Clendenning, Cheyun Lin
  • Patent number: 11869889
    Abstract: Self-aligned gate endcap (SAGE) architectures without fin end gaps, and methods of fabricating self-aligned gate endcap (SAGE) architectures without fin end gaps, are described. In an example, an integrated circuit structure includes a semiconductor fin having a cut along a length of the semiconductor fin. A gate endcap isolation structure has a first portion parallel with the length of the semiconductor fin and is spaced apart from the semiconductor fin. The gate endcap isolation structure also has a second portion in a location of the cut of the semiconductor fin and in contact with the semiconductor fin.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Scott B. Clendenning, Jessica Torres, Lukas Baumgartel, Kiran Chikkadi, Diane Lancaster, Matthew V. Metz, Florian Gstrein, Martin M. Mitan, Rami Hourani
  • Publication number: 20240006481
    Abstract: Embodiments disclosed herein include transistors and methods of forming transistors. In an embodiment, the transistor comprises a source region, a drain region, a first semiconductor channel between the source region and the drain region, and a second semiconductor channel between the source region and the drain region over the first semiconductor channel. In an embodiment, an insulator is around the source region, the drain region, the first semiconductor channel, and the second semiconductor channel. In an embodiment, a first access hole is in the insulator adjacent to a first edge of the first semiconductor channel, and a second access hole is in the insulator adjacent to a second edge of the first semiconductor channel.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Sudarat LEE, Ande KITAMURA, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Chia-Ching LIN, Scott B. CLENDENNING, Uygar E. AVCI
  • Publication number: 20230420510
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to creating a transistor structure by selectively growing a 2D TMD directly in a stacked channel configuration, such as a stacked nanowire or nanoribbon formation. In embodiments, this TMD growth may occur for all of the nanowires or nanoribbons in the transistor structure in one stage. Placement of a SAM on a plurality of dielectric layers within the transistor structure stack facilitates channel deposition and channel geometry in the stacked channel configuration. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING, Jiun-Ruey CHEN, Chia-Ching LIN, Carly ROGAN
  • Publication number: 20230420511
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques for a transistor structure that includes stacked nanoribbons as a single crystal or monolayer, such as a transition metal dichalcogenide (TMD) layer, grown on a silicon wafer using a seeding material. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING, Chia-Ching LIN, Carly ROGAN, Arnab SEN GUPTA
  • Publication number: 20230420364
    Abstract: A microelectronic device, a semiconductor package including the device, an IC device assembly including the package, and a method of making the device. The device includes a substrate; a first structure on the substrate, the first structure corresponding to a front end of line (FEOL) stack of the device and including a plurality of first transistors therein; and a second structure on the substrate, the second structure corresponding to a back end of line (BEOL) stack of the device, and including a plurality of second transistors therein, the plurality of second transistors including a transition metal dichalcogenide (TMD) material. The second transistors are part of a voltage regulation architecture to regulate voltage supply to the die.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Tristan A. Tronic, Ande Kitamura, Ashish Verma Penumatcha, Carl Hugo Naylor, Chelsey Dorow, Kirby Maxey, Scott B. Clendenning, Sudarat Lee, Uygar E. Avci
  • Publication number: 20230420514
    Abstract: Embodiments disclosed herein include transistor devices. In an embodiment, the transistor comprises a transition metal dichalcogenide (TMD) channel. In an embodiment, a two dimensional (2D) dielectric is over the TMD channel. In an embodiment, a gate metal is over the 2D dielectric.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Chelsey DOROW, Sudarat LEE, Kevin P. O'BRIEN, Ande KITAMURA, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Scott B. CLENDENNING, Uygar E. AVCI, Chia-Ching LIN
  • Publication number: 20230411390
    Abstract: In one embodiment, a transistor device includes a metal layer, a first dielectric layer comprising Hafnium and Oxygen on the metal layer, a channel layer comprising Tungsten and Selenium above the dielectric layer, a second dielectric layer comprising Hafnium and Oxygen on the channel layer, a source region comprising metal on a first end of the channel layer, a drain region comprising metal on a second end of the channel layer opposite the first end, and a metal contact on the second dielectric layer between the source regions and the drain region. In some embodiments, the transistor device may be included in a complementary metal-oxide semiconductor (CMOS) logic circuit in the back-end of an integrated circuit device, such as a processor or system-on-chip (SoC).
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Ande Kitamura, Ashish Verma Penumatcha, Carl Hugo Naylor, Kirby Maxey, Rachel A. Steinhardt, Scott B. Clendenning, Sudarat Lee, Uygar E. Avci, Chelsey Dorow
  • Publication number: 20230411443
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode. An insulator is over the first electrode. The insulator includes a first layer, and a second layer over the first layer. The first layer has a leakage current that is less than a leakage current of the second layer. The second layer has a dielectric constant that is greater than a dielectric constant of the first layer. A second electrode is over the insulator.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Kaan OGUZ, Chia-Ching LIN, Arnab SEN GUPTA, I-Cheng TUNG, Sou-Chi CHANG, Sudarat LEE, Matthew V. METZ, Uygar E. AVCI, Scott B. CLENDENNING, Ian A. YOUNG
  • Publication number: 20230411278
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode that includes a bottom region and a pair of vertical regions. First metal layers are outside the vertical regions and in contact with the vertical regions. An insulator is over the first electrode. A second electrode is over the insulator. A second metal layer is on a top surface of the second electrode.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, Arnab SEN GUPTA, I-Cheng TUNG, Matthew V. METZ, Sudarat LEE, Scott B. CLENDENNING, Uygar E. AVCI, Aaron J. WELSH
  • Patent number: 11791375
    Abstract: Embodiments herein describe techniques for a semiconductor device including a three dimensional capacitor. The three dimensional capacitor includes a pole, and one or more capacitor units stacked around the pole. A capacitor unit of the one or more capacitor units includes a first electrode surrounding and coupled to the pole, a dielectric layer surrounding the first electrode, and a second electrode surrounding the dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Sudipto Naskar, Manish Chandhok, Abhishek A. Sharma, Roman Caudillo, Scott B. Clendenning, Cheyun Lin
  • Publication number: 20230317783
    Abstract: Embodiments described herein may be related to forming nano ribbon transistors using layered 2D semiconductor channels. The layered 2D semiconductor channels may be created by forming a scaffold structure that has a first edge that extends from a silicon-based substrate, and a second edge opposite the first edge that is distal to the silicon based substrate. Alternating layers of 2D semiconductor material and a 3D semiconductor material may then be built on the second edge of the scaffold structure. In embodiments, the 3D semiconductor material may then be removed and a gate material deposited around at least a portion of the layers of 2D semiconductor material.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Kirby MAXEY, Carl H. NAYLOR, Uygar E. AVCI, Chelsey DOROW, Kevin P. O'BRIEN, Scott B. CLENDENNING, Matthew V. METZ, Chia-Ching LIN, Sudarat LEE, Ashish Verma PENUMATCHA
  • Publication number: 20230253444
    Abstract: Described herein are capacitor devices formed using perovskite insulators. In one example, a perovskite templating material is formed over an electrode, and a perovskite insulator layer is grown over the templating material. The templating material improves the crystal structure and electrical properties in the perovskite insulator layer. One or both electrodes may be ruthenium. In another example, a perovskite insulator layer is formed between two layers of indium tin oxide (ITO), with the ITO layers forming the capacitor electrodes.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 10, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Kaan Oguz, Chia-Ching Lin, I-Cheng Tung, Sudarat Lee, Sou-Chi Chang, Matthew V. Metz, Scott B. Clendenning, Uygar E. Avci, Ian A. Young, Jason C. Retasket, Edward O. Johnson, JR.