Patents by Inventor Scott Balster

Scott Balster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7217322
    Abstract: A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 15, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Scott Balster, Alfred Haeusler, Angelo Pinto, Manfred Schiekofer, Philipp Steinmann, Badih El-Kareh
  • Patent number: 7199430
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Publication number: 20070069269
    Abstract: The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
    Type: Application
    Filed: October 13, 2006
    Publication date: March 29, 2007
    Inventors: Scott Balster, Badih El-Kareh, Philipp Steinmann, Christoph Dirnecker
  • Patent number: 7192838
    Abstract: Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl
  • Publication number: 20070057281
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 15, 2007
    Inventors: Badih El-Kareh, Scott Balster, Hiroshi Yasuda, Manfred Schiekofer
  • Publication number: 20070018225
    Abstract: An integrated stacked capacitor comprises a first capacitor film (46) of polycrystalline silicide (poly), a second capacitor film (48) and a first dielectric (26) sandwiched between the first capacitor film (46) and second capacitor film (48). A second dielectric (34) and a third capacitor film (50) are provided. The second dielectric (34) is sandwiched between the second capacitor film (48) and third capacitor film (50). A method for fabrication of an integrated stacked capacitor comprises the following sequence of steps: applying a polysilicide layer (20) to form the first capacitor film (46); applying a first dielectric (26); applying a first metallization layer (28) to form the second capacitor film (48); applying a second dielectric (34); and applying a second metallization layer (34) to form the third capacitor film (50).
    Type: Application
    Filed: September 14, 2006
    Publication date: January 25, 2007
    Inventors: Christoph Dirnecker, Jeffrey Babcock, Scott Balster
  • Patent number: 7144789
    Abstract: In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: December 5, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Balster, Philipp Steinmann, Thomas Scharnagl, Manfred Schiekofer, Carl Willis
  • Patent number: 7130182
    Abstract: The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: October 31, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Scott Balster, Badih El-Kareh, Philipp Steinmann, Christoph Dirnecker
  • Patent number: 7118981
    Abstract: In a method of fabricating an integrated silicon-germanium heterobipolar transistor a silicon dioxide layer arranged between a silicon-germanium base layer and a silicon emitter layer is formed by means of Rapid Thermal Processing (RTP) to ensure enhanced component properties of the integrated silicon-germanium heterobipolar transistor.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Alfred Haeusler, Philipp Steinmann, Scott Balster, Badih El-Kareh
  • Publication number: 20060197158
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Application
    Filed: April 27, 2006
    Publication date: September 7, 2006
    Applicant: Texas Instruments Incorporated
    Inventors: Jeffrey Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory Howard
  • Publication number: 20060175657
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Application
    Filed: February 28, 2006
    Publication date: August 10, 2006
    Inventors: Jeffrey Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory Howard
  • Patent number: 7064399
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: June 20, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Publication number: 20060073672
    Abstract: An integrated BiCMOS semiconductor circuit has active moat areas in silicon. The active moat areas include electrically active components of the semiconductor circuit, which comprise active window structures for base and/or emitter windows. The integrated BiCMOS semiconductor circuit has zones where silicon is left to form dummy moat areas which do not include electrically active components, and has isolation trenches to separate the active moat areas from each other and from the dummy moat areas. The dummy moat areas comprise dummy window structures having geometrical dimensions and shapes similar to those of the active window structures for the base and/or emitter windows.
    Type: Application
    Filed: September 23, 2005
    Publication date: April 6, 2006
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl, Michael Schmitt
  • Publication number: 20050258990
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Application
    Filed: July 15, 2005
    Publication date: November 24, 2005
    Inventors: Jeffrey Babcock, Angelo Pinto, Gregory Howard, Philipp Steinmann, Scott Balster
  • Publication number: 20050250289
    Abstract: An integrated circuit and method of fabricating the integrated circuit is disclosed. The integrated circuit includes vertical bipolar transistors (30, 50, 60), each having a buried collector region (26?). A carbon-bearing diffusion barrier (28c) is disposed over the buried collector region (26?), to inhibit the diffusion of dopant from the buried collector region (26?) into the overlying epitaxial layer (28). The diffusion barrier (28c) may be formed by incorporating a carbon source into the epitaxial formation of the overlying layer (28), or by ion implantation. In the case of ion implantation of carbon or SiGeC, masks (52, 62) may be used to define the locations of the buried collector regions (26?) that are to receive the carbon; for example, portions underlying eventual collector contacts (33, 44c) may be masked from the carbon implant so that dopant from the buried collector region (26?) can diffuse upward to meet the contact (33).
    Type: Application
    Filed: July 13, 2005
    Publication date: November 10, 2005
    Inventors: Jeffrey Babcock, Angelo Pinto, Manfred Schiekofer, Scott Balster, Gregory Howard, Alfred Hausler
  • Patent number: 6958523
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 25, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard, Philipp Steinmann, Scott Balster
  • Publication number: 20050118771
    Abstract: A method of producing a vertical bipolar PNP transistor is disclosed. The phosphorous profile in the base layer is controlled. Carbon that is incorporated in the base layer in the vicinity of the base-collector junction suppresses the diffusion of phosphorous deeper than implanted in a subsequent thermal step. PNP transistors with a narrow phosphorous-doped base can thus be manufactured with a cut-off frequency increased from 23 GHz to 30 GHz.
    Type: Application
    Filed: October 28, 2004
    Publication date: June 2, 2005
    Inventors: Hiroshi Yasuda, Badih El-Kareh, Scott Balster, Manfred Schiekofer
  • Patent number: 6894366
    Abstract: An improved BJT is described that maximizes both Bvceo and Ft/Fmax for optimum performance. Scattering centers are introduced in the collector region (80) of the BJT to improve Bvceo. The inclusion of the scattering centers allows the width of the collector region WCD (90) to be reduced leading to an improvement in Ft/Fmax.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 17, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Jeffrey Babcock, Angelo Pinto, Scott Balster
  • Publication number: 20050098093
    Abstract: A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
    Type: Application
    Filed: September 2, 2004
    Publication date: May 12, 2005
    Inventors: Jeffrey Babcock, Scott Balster, Alfred Haeusler, Angelo Pinto, Manfred Schiekofer, Philipp Steinmann, Badih El-Kareh
  • Publication number: 20050054170
    Abstract: Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 10, 2005
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl