Patents by Inventor Scott C. McLeod
Scott C. McLeod has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20110115423Abstract: A control method for a brushless, three-phase DC motor. A voltage induced by rotation of a rotor may be sampled at a first expected zero crossing value to produce a first sampled voltage value. An average of a plurality of sampled voltage values, including voltage values sampled at a plurality of prior expected zero crossing values and the first sampled voltage value, may be calculated. The first sampled voltage value may be subtracted from the calculated average to produce a delta zero crossing error. A pulse-width modulation duty cycle may be adjusted based on the delta zero crossing error. The pulse-width modulation duty cycle may be used to control a rotational velocity of the rotor.Type: ApplicationFiled: November 18, 2009Publication date: May 19, 2011Inventors: Lynn R. Kern, Scott C. McLeod, Kenneth W. Gay
-
Patent number: 7893670Abstract: A voltage regulator may comprise a regulator output configured to provide a regulated voltage, which may be controlled by an error amplifier based on the regulated voltage and a reference voltage. The error amplifier may control a source-follower stage to mirror a multiple of the current flowing in the source-follower stage into an internal pass device. A voltage developed by the mirror current may control an external pass device configured to deliver the load current into the regulator output. A first resistor may be configured to decouple a load capacitor coupled between the regulator output and reference ground, when the load current is below a specified value. A second resistor may be configured to create a bias current in the internal pass device even when the external pass device is close to cut-off region. A third resistor may be configured to counter the effects of negative impedance at the control terminal of the external pass device caused by the current-gain of the external pass device.Type: GrantFiled: February 20, 2009Date of Patent: February 22, 2011Assignee: Standard Microsystems CorporationInventors: Srinivas K. Pulijala, Scott C. McLeod
-
Patent number: 7863849Abstract: A fan driver circuit for powering a fan with a linear voltage may be designed using digital design techniques, resulting in a testable, accurate circuit on a smaller die size. The fan driver circuit may be configured to receive a digital control signal, which may be a sequence of numeric values, e.g. multiple-bit binary numbers, each indicative of a desired present rotational speed of the fan. The fan driver circuit may be implemented using a digital modulator, e.g. a delta-sigma modulator, with a simple low-pass filter, e.g. an RC-filter at the output, and may use oversampling based on a system clock, to shift in-band noise to out-of-band frequencies, and digital interpolation to filter out unwanted images from the upsampled digital control signal. The delta-sigma modulator may be constructed as a first-order delta-sigma modulator using an error-feedback structure to reduce die size.Type: GrantFiled: February 29, 2008Date of Patent: January 4, 2011Assignee: Standard Microsystems CorporationInventors: Scott C. McLeod, Chao-Ming Tsai
-
Publication number: 20100213917Abstract: A voltage regulator may comprise a regulator output configured to provide a regulated voltage, which may be controlled by an error amplifier based on the regulated voltage and a reference voltage. The error amplifier may control a source-follower stage to mirror a multiple of the current flowing in the source-follower stage into an internal pass device. A voltage developed by the mirror current may control an external pass device configured to deliver the load current into the regulator output. A first resistor may be configured to decouple a load capacitor coupled between the regulator output and reference ground, when the load current is below a specified value. A second resistor may be configured to create a bias current in the internal pass device even when the external pass device is close to cut-off region. A third resistor may be configured to counter the effects of negative impedance at the control terminal of the external pass device caused by the current-gain of the external pass device.Type: ApplicationFiled: February 20, 2009Publication date: August 26, 2010Inventors: Srinivas K. Pulijala, Scott C. McLeod
-
Publication number: 20090322351Abstract: A capacitive sensing circuit may comprise an RC (resistive-capacitive) bridge circuit, with a switching signal simultaneously applied to a reference path, and a signal path comprising the capacitance to be detected. Small perturbations in the capacitance may be detected by mixing/correlating a difference signal representative of the difference between the reference path signal and the signal path signal, to the switching signal. The output of the mixer may be filtered to virtually eliminate all EMI signals. A narrowband approach may also allow filtering of unwanted signals, enabling operation in systems susceptible to high levels of noise. Frequency stepping of the switching signal may minimize inband signal interference, and allow operation in the presence of many signals that would otherwise result in failure of the sensing circuit. Pad calibration may be implemented to free the user from a need to characterize each button channel capacitance and tailor the operation for each channel.Type: ApplicationFiled: February 6, 2009Publication date: December 31, 2009Inventor: Scott C. McLeod
-
Patent number: 7622903Abstract: In one set of embodiments, a circuit may be implemented to deliver accurately ratioed currents to a remotely located semiconductor device that has a substantially non-linear input-output characteristic that varies with temperature and is subject to effects of electromagnetic interference (EMI). The circuit may be configured to use common mode rejection by establishing an identical impedance at each of the two terminals of the remotely located semiconductor device, in lieu of coupling shunting capacitor(s) across the terminals, in order to reject EMI signals while performing temperature measurements using the remotely located semiconductor device. This may facilitate maintaining fast sampling times when performing temperature measurements, while providing a more effective method for handling EMI induced currents that may lead to temperature measurement errors, thereby eliminating those errors.Type: GrantFiled: September 2, 2005Date of Patent: November 24, 2009Assignee: Standard Microsystems CorporationInventor: Scott C. McLeod
-
Patent number: 7602161Abstract: A voltage regulator may include a resistor-based voltage divider circuit generating a desired output voltage from a supply voltage, an output NMOS device whose source terminal may be configured as the output of the voltage regulator and whose drain terminal may be configured to receive the supply voltage, and a control circuit configured to control the output NMOS device to maintain the desired output voltage at the output of the voltage regulator. The control circuit may be configured to receive the desired output voltage from the voltage divider circuit as a first input, and to receive the output of the voltage regulator fed back as a second input to form a feedback loop.Type: GrantFiled: May 5, 2006Date of Patent: October 13, 2009Assignee: Standard Microsystems CorporationInventor: Scott C. McLeod
-
Publication number: 20090237117Abstract: A low-current differential signal activity detector circuit may be configured to reject large common mode signals on differential input lines, while still detecting smaller differential signals applied to the same set of differential input lines. The detector circuit may comprise a translinear buffer that is driven at the buffer input and at the buffer output by the differential input signals. The differential signal thereby driving the inputs of the detector circuit may be half-wave rectified through the buffer output devices and may be filtered to provide the detected output. When applying a common mode signal, the buffer's input and output may track each other, and no current may be rectified in the output devices, thus providing common-mode signal rejection. The detector circuit may also be configured with two buffers having their outputs coupled to a common node, each buffer input driven by a respective one of the differential input signals.Type: ApplicationFiled: March 18, 2008Publication date: September 24, 2009Inventor: Scott C. McLeod
-
Publication number: 20090220219Abstract: A fan driver circuit for powering a fan with a linear voltage may be designed using digital design techniques, resulting in a testable, accurate circuit on a smaller die size. The fan driver circuit may be configured to receive a digital control signal, which may be a sequence of numeric values, e.g. multiple-bit binary numbers, each indicative of a desired present rotational speed of the fan. The fan driver circuit may be implemented using a digital modulator, e.g. a delta-sigma modulator, with a simple low-pass filter, e.g. an RC-filter at the output, and may use oversampling based on a system clock, to shift in-band noise to out-of-band frequencies, and digital interpolation to filter out unwanted images from the upsampled digital control signal. The delta-sigma modulator may be constructed as a first-order delta-sigma modulator using an error-feedback structure to reduce die size.Type: ApplicationFiled: February 29, 2008Publication date: September 3, 2009Inventors: Scott C. McLeod, Chao-Ming Tsai
-
Patent number: 7567119Abstract: A power supply management device including a current limiting protection circuit. The power supply management device may include an output terminal, a first transistor, a replication circuit, a comparator circuit, and a control circuit. The first transistor may provide an output current to the output terminal of the power supply management device. The replication circuit may be connected to the first transistor and may replicate the output current to a separate path to monitor the output current. The comparator circuit may be connected to the replication circuit and may compare the replicated output current to a current reference. The control circuit may be connected to the first transistor and to the comparator circuit. In response to the replicated output current being greater than the current reference, the control circuit may limit the output current the first transistor provides to the output terminal to an amount corresponding to the current reference.Type: GrantFiled: January 10, 2007Date of Patent: July 28, 2009Assignee: Standard Microsystems CorporationInventors: Madan G. Rallabandi, Scott C. McLeod
-
Patent number: 7545214Abstract: An operational amplifier including an input stage. The input stage may include first and second differential input circuits and a first current mirror. When an input terminal of the operational amplifier is at a positive voltage rail, the first differential input circuit may be activated. When the input terminal is at a negative voltage rail, the second differential input circuit may be activated. In either case, this may cause the first current mirror to provide a current of a predetermined value to each of first and second input terminals of a control circuit, and to each of first and second nodes coupled to a rail-to-rail output stage. The input stage may maintain the current provided to each of the input terminals of the control circuit and to each of the nodes coupled to the rail-to-rail output stage constant over the full input voltage range from the negative voltage rail to the positive voltage rail.Type: GrantFiled: April 30, 2007Date of Patent: June 9, 2009Assignee: Standard Microsystems CorporationInventors: Madan G. Rallabandi, Scott C. McLeod
-
Publication number: 20090009234Abstract: A temperature sensor circuit and system providing accurate digital temperature readings using a local or remote temperature diode. In one set of embodiments a change in diode junction voltage (?VBE) proportional to the temperature of the diode is captured and provided to an analog to digital converter (ADC), which may perform required signal conditioning functions on ?VBE, and provide a digital output corresponding to the temperature of the diode. DC components of errors in the measured temperature that may result from EMI noise modulating the junction voltage (VBE) may be minimized through the use of a front-end sample-and-hold circuit coupled between the diode and the ADC, in combination with a shunt capacitor coupled across the diode junction. The sample-and-hold-circuit may sample VBE at a frequency that provides sufficient settling time for each VBE sample, and provide corresponding stable ?VBE samples to the ADC at the ADC operating frequency.Type: ApplicationFiled: September 16, 2008Publication date: January 8, 2009Inventors: Robert St. Pierre, Scott C. McLeod
-
Publication number: 20080265993Abstract: An operational amplifier including an input stage. The input stage may include first and second differential input circuits and a first current mirror. When an input terminal of the operational amplifier is at a positive voltage rail, the first differential input circuit may be activated. When the input terminal is at a negative voltage rail, the second differential input circuit may be activated. In either case, this may cause the first current mirror to provide a current of a predetermined value to each of first and second input terminals of a control circuit, and to each of first and second nodes coupled to a rail-to-rail output stage. The input stage may maintain the current provided to each of the input terminals of the control circuit and to each of the nodes coupled to the rail-to-rail output stage constant over the full input voltage range from the negative voltage rail to the positive voltage rail.Type: ApplicationFiled: April 30, 2007Publication date: October 30, 2008Inventors: Madan G. Rallabandi, Scott C. McLeod
-
Patent number: 7433790Abstract: In one set of embodiments, trimming of a reference, which may be a bandgap reference and which is configured on an integrated circuit, may be controlled by an algorithm executed by logic circuitry also configured on the integrated circuit. The bandgap reference may be configured to generate a reference voltage provided to an analog to digital converter (ADC) comprised in a temperature sensor that may also be configured on the integrated circuit. The logic circuitry may be configured to execute one or more of a variety of test algorithms, for example a Successive Approximation Method or remainder processing, that are operable to adjust values of reference trim bits used in trimming the bandgap reference.Type: GrantFiled: June 6, 2005Date of Patent: October 7, 2008Assignee: Standard Microsystems CorporationInventors: Thomas R. Anderson, William Castellano, Scott C. McLeod
-
Patent number: 7429129Abstract: A temperature sensor circuit and system providing accurate digital temperature readings using a local or remote temperature diode. In one set of embodiments a change in diode junction voltage (?VBE) proportional to the temperature of the diode is captured and provided to an analog to digital converter (ADC), which may perform required signal conditioning functions on ?VBE, and provide a digital output corresponding to the temperature of the diode. DC components of errors in the measured temperature that may result from EMI noise modulating the junction voltage (VBE) may be minimized through the use of a front-end sample-and-hold circuit coupled between the diode and the ADC, in combination with a shunt capacitor coupled across the diode junction. The sample-and-hold-circuit may sample VBE at a frequency that provides sufficient settling time for each VBE sample, and provide corresponding stable ?VBE samples to the ADC at the ADC operating frequency.Type: GrantFiled: February 28, 2005Date of Patent: September 30, 2008Assignee: Standard Microsystems CorporationInventors: Robert St. Pierre, Scott C. McLeod
-
Publication number: 20080165465Abstract: A power supply management device including a current limiting protection circuit. The power supply management device may include an output terminal, a first transistor, a replication circuit, a comparator circuit, and a control circuit. The first transistor may provide an output current to the output terminal of the power supply management device. The replication circuit may be connected to the first transistor and may replicate the output current to a separate path to monitor the output current. The comparator circuit may be connected to the replication circuit and may compare the replicated output current to a current reference. The control circuit may be connected to the first transistor and to the comparator circuit. In response to the replicated output current being greater than the current reference, the control circuit may limit the output current the first transistor provides to the output terminal to an amount corresponding to the current reference.Type: ApplicationFiled: January 10, 2007Publication date: July 10, 2008Inventors: Madan G. Rallabandi, Scott C. McLeod
-
Patent number: 7332952Abstract: An accurate temperature monitoring system that uses a precision current control circuit to apply accurately ratioed currents to a semiconductor device, which may be a bipolar junction transistor (BJT), used for sensing temperature. A change in base-emitter voltage (?VBE) proportional to the temperature of the BJT may be captured and provided to an ADC, which may generate a numeric value corresponding to that temperature. The precision current control circuit may be configured to generate a reference current, capture the base current of the BJT, generate a combined current equivalent to a sum total of the base current and a multiple of the reference current, and provide the combined current to the emitter of the BJT. In response to this combined current, the collector current of the BJT will be equivalent to the multiple of the reference current. The ratios of the various collector currents conducted by the BJT may thus be accurately controlled, leading to more accurate temperature measurements.Type: GrantFiled: November 23, 2005Date of Patent: February 19, 2008Assignee: Standard Microsystems CorporationInventors: Scott C. McLeod, Aniruddha Bashar
-
Patent number: 7281846Abstract: A temperature measurement device may be implemented by coupling a PN-junction, which may be comprised in a diode, to an analog-to-digital converter (ADC) that comprises an integrator. Different currents may be successively applied to the diode, resulting in different VBE values across the diode. The ?VBE values thus obtained may be successively integrated. Appropriate values for the different currents may be determined based on a set of mathematical equations, each equation relating the VBE value to the temperature of the diode, the current applied to the diode and parasitic series resistance associated with the diode. When the current sources with the appropriate values are sequentially applied to the diode and the resulting diode voltage differences are integrated by the integrator comprised in the ADC, the error in the temperature measurement caused by series resistance is canceled in the ADC, and an accurate temperature reading of the diode is obtained from the output of the ADC.Type: GrantFiled: August 23, 2004Date of Patent: October 16, 2007Assignee: Standard Microsystems CorporationInventor: Scott C. McLeod
-
Patent number: 7193543Abstract: In one set of embodiments, a temperature measurement system may include an analog to digital converter (ADC) to produce digital temperature readings according to a difference base-emitter voltage (?VBE) developed across a PN-junction. A clock generating circuit may be configured to provide a sampling clock used by the ADC, which in some embodiments may be a delta-sigma ADC, in performing the conversions. The clock generating circuit may be configured to change the frequency of the sampling clock a specified number of times within each one of the one or more conversion cycles to reduce an error component in the temperature measurement, where the error component is produced by an interfering signal, such as an electromagnetic interference (EMI) signal being coherent with the sampling clock, and/or a noise residing on the voltage supply and also being coherent with the sampling clock.Type: GrantFiled: September 2, 2005Date of Patent: March 20, 2007Assignee: Standard Microsystems CorporationInventors: Scott C. McLeod, Kenneth W. Gay
-
Patent number: 7140767Abstract: A temperature sensor circuit and system providing accurate readings using a temperature diode whose ideality factor may fall within a determined range. In one set of embodiments a change in diode junction voltage (?VBE) proportional to the temperature of the diode is captured and provided to an ADC, which may perform required signal conditioning functions on ?VBE, and provide a numeric value output corresponding to the temperature of the diode. Errors in the measured temperature that might result from using diodes with ideality factors that differ from an expected ideality factor may be eliminated by programming the system to account for differing ideality factors. The gain of the temperature sensor may be matched to the ideality factor of the temperature diode by using an accurate, highly temperature stable reference voltage of the ADC to set the gain of the temperature measurement system.Type: GrantFiled: November 2, 2004Date of Patent: November 28, 2006Assignee: Standard Microsystems CorporationInventors: Scott C. McLeod, Thomas R. Anderson, Steven Burstein, Leonid A. Bekker