Patents by Inventor Scott Sheppard

Scott Sheppard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220084950
    Abstract: RF transistor amplifiers an RF transistor amplifier die having a semiconductor layer structure, an interconnect structure having first and second opposing sides, wherein the first side of the interconnect structure is adjacent a surface of the RF transistor amplifier die such that the interconnect structure and the RF transistor amplifier die are in a stacked arrangement, and one or more circuit elements on the first and/or second side of the interconnect structure.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Inventors: Basim Noori, Marvin Marbell, Scott Sheppard, Kwangmo Chris Lim, Alexander Komposch, Qianli Mu
  • Patent number: 11239802
    Abstract: Gallium nitride based RF transistor amplifiers include a semiconductor structure having a gallium nitride based channel layer and a gallium nitride based barrier layer thereon, and are configured to operate at a specific direct current drain-to-source bias voltage. These amplifiers are configured to have a normalized drain-to-gate capacitance at the direct current drain-to-source bias voltage, and to have a second normalized drain-to-gate capacitance at two-thirds the direct current drain-to-source bias voltage, where the second normalized drain-to-gate capacitance is less than twice the first normalized drain-to-gate capacitance.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 1, 2022
    Assignee: Wolfspeed, Inc.
    Inventors: Qianli Mu, Zulhazmi Mokhti, Jia Guo, Scott Sheppard
  • Publication number: 20220028821
    Abstract: A semiconductor device package includes a package substrate having a die attach region, a silicon carbide (SiC) substrate having a first surface including a semiconductor device layer thereon and a second surface that is opposite the first surface, and a die attach metal stack. The die attach metal stack includes a sputtered die attach material layer that attaches the second surface of the SiC substrate to the die attach region of the package substrate, where the sputtered die attach material layer comprises a void percent of about 15% or less. The sputtered die attach material layer may be formed using a sputter gas including at least one of krypton (Kr), xenon (Xe), or radon (Rn). The die attach metal stack may further include a metal interlayer that prevent contacts with a first barrier metal layer during a phase transition of the die attach material layer.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Inventors: Alexander Komposch, Kevin Schneider, Scott Sheppard
  • Publication number: 20210408976
    Abstract: RF transistor amplifiers include an RF transistor amplifier die having a Group III nitride-based semiconductor layer structure and a plurality of gate terminals, a plurality of drain terminals, and at least one source terminal that are each on an upper surface of the semiconductor layer structure, an interconnect structure on an upper surface of the RF transistor amplifier die, and a coupling element between the RF transistor amplifier die and the interconnect structure that electrically connects the gate terminals, the drain terminals and the source terminal to the interconnect structure.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Kwangmo Chris Lim, Basim Noori, Qianli Mu, Marvin Marbell, Scott Sheppard, Alexander Komposch
  • Publication number: 20210376807
    Abstract: RF transistor amplifiers include an RF transistor amplifier die having a semiconductor layer structure, a coupling element on an upper surface of the semiconductor layer structure, and an interconnect structure on an upper surface of the coupling element so that the RF transistor amplifier die and the interconnect structure are in a stacked arrangement. The coupling element includes a first shielded transmission line structure.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 2, 2021
    Inventors: Kwangmo Chris Lim, Basim Noori, Qianli Mu, Marvin Marbell, Scott Sheppard, Alexander Komposch
  • Publication number: 20210372330
    Abstract: A method for detecting blowout precursors in at least one gas turbine combustor comprising: receiving combustion dynamics acoustic data measured by an acoustic measuring device associated with the combustor in real time; performing wavelet analysis on the acoustic data using simplified Mexican Hat wavelet transform analysis; and determining the existence of a blowout precursor based at least in part on the wavelet analysis. Provided also is a system and a non-transitory computer readable medium configured to perform the method.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Inventors: Leonard Charles ANGELLO, David Robert NOBLE, Andrew MUELLER, John Alexander MILTNER, Benjamin EMERSON, Scott SHEPPARD, Jared KEE, Timothy Charles LIEUWEN
  • Publication number: 20210359118
    Abstract: A high-electron mobility transistor (HEMT) that includes a substrate, a group III-Nitride channel layer on the substrate, a group III-Nitride barrier layer on the group III-Nitride channel layer, the group III-Nitride barrier layer that includes a higher bandgap than a bandgap of the group III-Nitride channel layer, a source electrically coupled to the group III-Nitride barrier layer, a gate electrically coupled to the group III-Nitride barrier layer, and a drain electrically coupled to the group III-Nitride barrier layer. The source and/or the drain are structured and arranged to extend through the group III-Nitride barrier layer into the group III-Nitride channel layer.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 18, 2021
    Inventors: Fabian Radulescu, Scott Sheppard, Dan Namishia, Chris Hardiman, Terry Alcorn, Kyle Bothe, Jennifer Gao
  • Patent number: 11152325
    Abstract: A semiconductor device package includes a package substrate having a die attach region, a silicon carbide (SiC) substrate having a first surface including a semiconductor device layer thereon and a second surface that is opposite the first surface, and a die attach metal stack. The die attach metal stack includes a sputtered die attach material layer that attaches the second surface of the SiC substrate to the die attach region of the package substrate, where the sputtered die attach material layer comprises a void percent of about 15% or less. The sputtered die attach material layer may be formed using a sputter gas including at least one of krypton (Kr), xenon (Xe), or radon (Rn). The die attach metal stack may further include a metal interlayer that prevent contacts with a first barrier metal layer during a phase transition of the die attach material layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: October 19, 2021
    Assignee: Cree, Inc.
    Inventors: Alexander Komposch, Kevin Schneider, Scott Sheppard
  • Publication number: 20210313293
    Abstract: A transistor amplifier includes a semiconductor layer structure comprising first and second major surfaces and a plurality of unit cell transistors on the first major surface that are electrically connected in parallel, each unit cell transistor comprising a gate finger coupled to a gate manifold, a drain finger coupled to a drain manifold, and a source finger. The semiconductor layer structure is free of a via to the source fingers on the second major surface.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 7, 2021
    Inventors: Basim Noori, Marvin Marbell, Scott Sheppard, Kwangmo Chris Lim, Alexander Komposch, Qianli Mu
  • Publication number: 20210313282
    Abstract: A transistor amplifier includes a group III-nitride based amplifier die including a gate terminal, a drain terminal, and a source terminal on a first surface of the amplifier die and an interconnect structure electrically bonded to the gate terminal, drain terminal and source terminal of the amplifier die on the first surface of the amplifier die and electrically bonded to an input path and output path of the transistor amplifier.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 7, 2021
    Inventors: Basim Noori, Marvin Marbell, Scott Sheppard, Kwangmo Chris Lim, Alexander Komposch, Qianli Mu
  • Patent number: 11075271
    Abstract: A transistor includes a semiconductor layer structure, a source electrode and a drain electrode on the semiconductor layer structure, a gate on a surface of the semiconductor layer structure between the source electrode and the drain electrode, and a field plate. The field plate includes a first portion adjacent the gate and a second portion adjacent the source or drain electrode. The second portion of the field plate is farther from the surface of the semiconductor layer structure than the first portion of the field plate, and is closer to the surface of the semiconductor layer structure than an extended portion of the gate. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 27, 2021
    Assignee: Cree, Inc.
    Inventors: Evan Jones, Terry Alcorn, Jia Guo, Fabian Radulescu, Scott Sheppard
  • Publication number: 20210193825
    Abstract: A semiconductor device includes a plurality of unit cell transistors on a common semiconductor structure, the unit cell transistors electrically connected in parallel, and each unit cell transistor including a respective gate finger. Respective threshold voltages of first and second of the unit cell transistors differ by at least 0.1 volts and/or threshold voltages of first and second segments of a third of the unit cell transistors differ by at least 0.1 volts.
    Type: Application
    Filed: March 3, 2021
    Publication date: June 24, 2021
    Inventors: Yueying Liu, Saptharishi Sriram, Scott Sheppard, Jennifer Gao
  • Publication number: 20210175351
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Patent number: 11030651
    Abstract: A web page personalization system comprises a profile database and a profile manager. The profile database stores profiles for users. The profiles are comprised of segments of profile information for the users. The profile manager receives a request over an Internet for a group of segments of profile information about a user from a requestor. The request includes an anonymized identifier stored on a device for the user. The profile manager identifies a profile from the profiles for the user in the profile database using the anonymized identifier. The profile is comprised of the segments of the profile information about the user. The profile manager sends a portion of the profile information corresponding to the group of segments in an anonymized form in a reply over the Internet to the requestor. The requestor uses the group of segments to generate a personalized web page for the user.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: June 8, 2021
    Assignee: ADP, LLC
    Inventors: Scott Sheppard, Sandra Angevine
  • Publication number: 20210134966
    Abstract: A high electron mobility transistor includes a channel layer, a barrier layer on the channel layer, source and drain contacts on the barrier layer, a gate contact between the source and drain contacts, and a multi-layer passivation structure on the upper surface of the barrier layer between the source contact and the drain contact. The multi-layer passivation structure includes a first passivation layer that comprises a charge dissipation material directly contacts the upper surface of the barrier layer and a second passivation layer comprising a different material than the first passivation layer that also directly contacts the upper surface of the barrier layer. In some embodiments, at least one recess may be formed in the upper surface of the barrier layer and the second passivation layer may be formed within the recesses.
    Type: Application
    Filed: January 14, 2021
    Publication date: May 6, 2021
    Inventors: Kyoung-Keun Lee, Fabian Radulescu, Scott Sheppard
  • Publication number: 20210119029
    Abstract: A gallium nitride based monolithic microwave integrated circuit includes a substrate, a channel layer on the substrate and a barrier layer on the channel layer. A recess is provided in a top surface of the barrier layer. First gate, source and drain electrodes are provided on the barrier layer opposite the channel layer, with a bottom surface of the first gate electrode in direct contact with the barrier layer. Second gate, source and drain electrodes are also provided on the barrier layer opposite the channel layer. A gate insulating layer is provided in the recess in the barrier layer, and the second gate electrode is on the gate insulating layer opposite the barrier layer and extending into the recess. The first gate, source and drain electrodes comprise the electrodes of a depletion mode transistor, and the second gate, source and drain electrodes comprise the electrodes of an enhancement mode transistor.
    Type: Application
    Filed: December 4, 2020
    Publication date: April 22, 2021
    Inventors: Saptharishi Sriram, Jennifer Qingzhu Gao, Jeremy Fisher, Scott Sheppard
  • Publication number: 20210111254
    Abstract: A transistor includes a semiconductor layer structure, a source electrode and a drain electrode on the semiconductor layer structure, a gate on a surface of the semiconductor layer structure between the source electrode and the drain electrode, and a field plate. The field plate includes a first portion adjacent the gate and a second portion adjacent the source or drain electrode. The second portion of the field plate is farther from the surface of the semiconductor layer structure than the first portion of the field plate, and is closer to the surface of the semiconductor layer structure than an extended portion of the gate. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 15, 2021
    Inventors: Evan Jones, Terry Alcorn, Jia Guo, Fabian Radulescu, Scott Sheppard
  • Patent number: 10978583
    Abstract: A semiconductor device includes a plurality of unit cell transistors on a common semiconductor structure, the unit cell transistors electrically connected in parallel, and each unit cell transistor including a respective gate finger. Respective threshold voltages of first and second of the unit cell transistors differ by at least 0.1 volts and/or threshold voltages of first and second segments of a third of the unit cell transistors differ by at least 0.1 volts.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: April 13, 2021
    Assignee: Cree, Inc.
    Inventors: Yueying Liu, Saptharishi Sriram, Scott Sheppard, Jennifer Gao
  • Publication number: 20210104978
    Abstract: Gallium nitride based RF transistor amplifiers include a semiconductor structure having a gallium nitride based channel layer and a gallium nitride based barrier layer thereon, and are configured to operate at a specific direct current drain-to-source bias voltage. These amplifiers are configured to have a normalized drain-to-gate capacitance at the direct current drain-to-source bias voltage, and to have a second normalized drain-to-gate capacitance at two-thirds the direct current drain-to-source bias voltage, where the second normalized drain-to-gate capacitance is less than twice the first normalized drain-to-gate capacitance.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 8, 2021
    Inventors: QIANLI MU, Zulhazmi Mokhti, Jia Guo, Scott Sheppard
  • Patent number: 10971612
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: April 6, 2021
    Assignee: Cree, Inc.
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler