Patents by Inventor Sean Matthews

Sean Matthews has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150299020
    Abstract: Pads, for cutting thin glass on machines designed for thicker glass, are provided with variable viscoelasticity. In further examples, methods of cutting a thin sheet of glass on a machine designed for thicker glass include the step of placing a pad between a working surface and the sheet of glass. In still further examples, methods of forming a scribing mark on a sheet of glass include the step of placing a compressible pad between a sheet of glass and a working surface.
    Type: Application
    Filed: November 21, 2013
    Publication date: October 22, 2015
    Inventors: Yixing Bao, Peter Lawrence Bocko, Sean Matthew Garner, Yichun Wang
  • Patent number: 9162047
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 20, 2015
    Assignee: PACESETTER, INC.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Publication number: 20150251873
    Abstract: Glass web including a first glass-web portion (30), a second portion (40), and a splice joint (50) coupling the first glass-web portion to the second portion, wherein the slice joint includes a splice member (60) with at least one gas-permeable attachment portion. In further examples, methods of splicing a first glass-web portion to a second portion include the step of splicing the first glass-web portion to the second portion with a splice member, wherein the step of splicing includes attaching a gas-permeable attachment portion of the splice member to the first glass-web portion.
    Type: Application
    Filed: October 22, 2013
    Publication date: September 10, 2015
    Inventors: Sean Matthew Garner, Richard Jonathon Kohler, Sue Camille Lewis, Lynn Bernard Simpson, Lili Tian
  • Publication number: 20150242990
    Abstract: Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays.
    Type: Application
    Filed: May 12, 2015
    Publication date: August 27, 2015
    Inventors: Luke Tilman Peterson, Ryan R. Salsbury, Sean Matthew Gies, Steven John Clohset
  • Publication number: 20150209319
    Abstract: The present disclosure provides a means of stabilising an antibody, in particular in protease-rich environments such as the stomach and intestine. A composition, in particular a pharmaceutical composition, comprising an antibody and camostat mesylate is provided, together with uses of said composition as a medicament and in methods of treatment. Compositions of the disclosure are particularly useful in the topical treatment of gastrointestinal conditions, such as Crohn's Disease or ulcerative colitis, or for direct activity in the gut mucosal immune system.
    Type: Application
    Filed: August 21, 2013
    Publication date: July 30, 2015
    Inventors: Sean Matthew Cleveland, Stefan Salomon
  • Publication number: 20150197407
    Abstract: A glass ribbon coated with a flexible material, the flexible coating forming a flexible web portion that extends from an edge of the glass ribbon at least one millimeter. The flexible web portion can be used to facilitate handling of the glass ribbon in a manufacturing process, and may include registration markings, or perforations, that further facilitate precise positioning of the ribbon.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 16, 2015
    Inventors: Sean Matthew Garner, Gary Edward Merz
  • Patent number: 9030476
    Abstract: Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: Imagination Technologies, Limited
    Inventors: Luke Tilman Peterson, Ryan R. Salsbury, Sean Matthew Gies, Steven John Clohset
  • Publication number: 20150072121
    Abstract: An entry sheet comprising polymer material for drilling printed circuit boards is provided. The entry sheet is suitable for use with a broad range of diameters, including commonly available drill diameters. The entry sheet comprises an adhesive epoxy configured to, among others, resist drill deflection, resist mechanical damage, and reduce to dust such that the entry sheet may increase drilling accuracy, protect printed circuit board from damage, minimize entry burrs, and may addresses other issues such as fliers, bird nesting, and the like.
    Type: Application
    Filed: July 8, 2014
    Publication date: March 12, 2015
    Inventors: SEAN MATTHEW REDFERN, JAMES JOSEPH MILLER, PAUL RONALD ST. JOHN
  • Publication number: 20150044445
    Abstract: A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 ?m. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
    Type: Application
    Filed: August 1, 2014
    Publication date: February 12, 2015
    Inventors: Sean Matthew Garner, Ming-Jun Li, Xinghua Li
  • Patent number: 8927053
    Abstract: Disclosed is an electronic device comprising a glass, glass ceramic, or ceramic sheet having a thickness less than about 0.4 mm and wherein a minimum strength of the inorganic substrate is greater than about 500 MPa. Also disclosed is a method of making an electronic device including drawing a viscous inorganic material to form an inorganic ribbon having opposing as-formed edges along a length of the ribbon, separating the ribbon to form a substrate sheet of inorganic material comprising two as-formed edges and forming a device element on the inorganic substrate.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: January 6, 2015
    Assignee: Corning Incorporated
    Inventors: Sean Matthew Garner, Gregory Scott Glaesemann, Mark Lawrence Powley
  • Patent number: 8918156
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8918157
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8918155
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914093
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914094
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914091
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914092
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8895892
    Abstract: A non-contact glass shearing device and a method are described herein that vertically scribes or cuts a downward moving glass sheet to remove outer edges (beads) from the downward moving glass sheet. In addition, the non-contact glass shearing device and method can horizontally scribe or cut the downward moving glass sheet (without the outer edges) so that it can be separated into distinct glass sheets.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 25, 2014
    Assignee: Corning Incorporated
    Inventors: Sean Matthew Garner, Xinghua Li
  • Publication number: 20140342148
    Abstract: A glass structure and a method for creating the glass structure include a glass carrier layer and a flexible glass substrate. The glass structure includes an intermediate layer at least temporarily bonding the flexible glass substrate to the glass carrier layer. The intermediate layer includes a first debond layer attached to an adhesion layer. The first debond layer is at least partially resistant to a high temperature processing of the glass structure at a temperature of greater than or equal to about 500° C. The first debond layer is configured to enable the flexible glass substrate to be debonded from the glass carrier layer after the high temperature processing of the glass structure. A method for processing the glass structure includes debonding the flexible glass substrate from the glass carrier layer after the high temperature process.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Theresa Chang, Sean Matthew Garner, Robert Randall Hancock, JR., Jennifer Lynn Lyon
  • Publication number: 20140333622
    Abstract: A synthetic acceleration shape bound primitives composing a 3-D scene, and is defined using a group of fundamental shapes arranged to bound the primitives, and for which intersection results for group members yield an ultimate intersection testing result for the synthetic shape, using a logical operator. For example, two or more spheres are used to bound an object so that each of the spheres is larger than a minimum necessary to bound the object, and a volume defined by an intersection between the shapes defines a smaller volume in which the object is bounded. A ray is found to potentially intersect the object only if it intersects both spheres. In another example, an element may be defined by a volumetric union of component elements. Indicators can determine how groups of shapes should be interpreted. Synthetic shapes can be treated as a single element in a graph or hierarchical arrangement of acceleration elements.
    Type: Application
    Filed: April 29, 2014
    Publication date: November 13, 2014
    Applicant: Imagination Technologies Limited
    Inventors: Sean Matthew Gies, James A. McCombe, Luke T. Peterson