Patents by Inventor Seiichi Nakatani

Seiichi Nakatani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6787884
    Abstract: A circuit component package of the present invention includes a mounting member including a substrate and a wiring pattern provided on the substrate, a circuit component including a component body and an external electrode provided at an end of the component body, the circuit component being arranged on the mounting member, and a conductive material that electrically connects the external electrode with the wiring pattern. In the circuit component, the component body is shaped so that a first portion of the component body on which the external electrode is provided is thinner than a second portion of the component body, the second portion being a portion on which the external electrode is not provided, and further, the external electrode is arranged in a region on a side on which the component body is positioned with respect to a reference plane containing a predetermined surface of the component body.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: September 7, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Hirano, Seiichi Nakatani, Hiroyuki Handa, Tsunenori Yoshida, Yoshihisa Yamashita, Hiroyuki Ishitomi
  • Patent number: 6784530
    Abstract: A circuit component built-in module includes: a first electrical insulating substrate made of a mixture containing an inorganic filler and a thermosetting resin; a plurality of wiring patterns formed at least on a principal surface of the first electrical insulating substrate; a semiconductor chip incorporated in the first electrical insulating substrate and connected electrically with the wiring patterns; and inner vias electrically connecting the plurality of wiring patterns with one another, the inner vias passing through the first electrical insulating substrate. In the circuit component built-in module, the semiconductor chip has a thickness of not less than 30 &mgr;m and not more than 100 &mgr;m, and has a non-wired surface ground, and the circuit component built-in module has a thickness in a range of not less than 80 &mgr;m and not more than 200 &mgr;m.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: August 31, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuhiro Sugaya, Toshiyuki Asahi, Shingo Komatsu, Yoshiyuki Yamamoto, Seiichi Nakatani, Satoru Yuhaku, Kazuo Ohtani
  • Publication number: 20040160752
    Abstract: An electronic component built-in module according to the present invention includes a pair of opposed circuit substrates, each of which includes a wiring pattern and an insulating base material containing a resin, an insulating layer that is placed between the pair of circuit substrates and contains an inorganic filler and a resin composition containing a thermosetting resin, an electronic component that is embedded in the insulating layer, and an inner via that is provided in the insulating layer so as to make an electrical connection between wiring patterns provided on different circuit substrates. A glass transition temperature Tg1 of the resin composition contained in the insulating layer and a glass transition temperature Tg2 of the insulating base material included in each of the circuit substrates satisfy a relationship Tg1>Tg2.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 19, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO.
    Inventors: Yoshihisa Yamashita, Koichi Hirano, Yasuhiro Sugaya, Toshiyuki Asahi, Seiichi Nakatani
  • Publication number: 20040158980
    Abstract: A component built-in module including a core layer formed of an electric insulating material, and an electric insulating layer and a plurality of wiring patterns, which are formed on at least one surface of the core layer. The electric insulating material of the core layer is formed of a mixture including at least an inorganic filler and a thermosetting resin. At least one or more of active components and/or passive components are contained in an internal portion of the core layer. The core layer has a plurality of wiring patterns and a plurality of inner vias formed of a conductive resin. The electric insulating material formed of the mixture including at least an inorganic filler and a thermosetting resin of the core layer has a modulus of elasticity at room temperature in the range from 0.6 GPa to 10 GPa. Thus, it is possible to provide a thermal conductive component built-in module capable of filling the inorganic filler with high density; burying the active component such as a semiconductor etc.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiichi Nakatani, Yasuhiro Sugaya, Toshiyuki Asahi, Shingo Komatsu
  • Publication number: 20040145044
    Abstract: A circuit component built-in module includes: a first electrical insulating substrate made of a mixture containing an inorganic filler and a thermosetting resin; a plurality of wiring patterns formed at least on a principal surface of the first electrical insulating substrate; a semiconductor chip incorporated in the first electrical insulating substrate and connected electrically with the wiring patterns; and inner vias electrically connecting the plurality of wiring patterns with one another, the inner vias passing through the first electrical insulating substrate. In the circuit component built-in module, the semiconductor chip has a thickness of not less than 30 &mgr;m and not more than 100 &mgr;m, and has a non-wired surface ground, and the circuit component built-in module has a thickness in a range of not less than 80 &mgr;m and not more than 200 &mgr;m.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 29, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuhiro Sugaya, Toshiyuki Asahi, Shingo Komatsu, Yoshiyuki Yamamoto, Seiichi Nakatani, Satoru Yuhaku, Kazuo Ohtani
  • Publication number: 20040145046
    Abstract: In a power module, a wiring substrate to which a heat generating component is connected electrically and a heat sink are connected through the medium of a thermally conductive and electrically insulating member. The thermally conductive and electrically insulating member is a curable composition containing (A) a thermosetting resin, (B) a thermoplastic resin, (C) a latent curing agent, and (D) an inorganic filler. The thermally conductive and electrically insulating member is bonded to the heat generating component in such a manner as to be deformed complementarily to unevenness in shape and height of the heat generating component. Heat generated from the heat generating component is radiated by means of the heat sink. Thus, a power module that allows heat generated from an electronic component to be radiated evenly and efficiently and achieves high-density mounting, and a method of manufacturing the power module are provided.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 29, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Yamashita, Koichi Hirano, Seiichi Nakatani
  • Publication number: 20040142511
    Abstract: A thermally conductive substrate includes a thermally conductive resin sheet member attached to a lead frame. The lead frame comprises a thermally conductive resin sheet member and it is integrated with the thermally conductive resin sheet member on the lead frame. The thermally conductive resin sheet member is formed from a thermosetting resin mixture which comprises 70 to 90 parts by weight of an inorganic filler and 5 to 30 parts by weight of a thermosetting resin composition including a thermosetting resin, and the thermosetting resin is in a semi-cured state.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Inventors: Yoshihisa Yamashita, Koichi Hirano, Seiichi Nakatani, Masaki Suzumura
  • Publication number: 20040125543
    Abstract: A miniature solid electrolytic capacitor is provided, which is suitable for being disposed within an electrically insulating layer, and is connected to other component using an electrically conductive adhesive with a connection resistance at an anode low and with connection reliability improved. Specifically, the electrolytic capacitor includes a valve metal element for an anode 10 having a capacitor forming part 10A and an electrode lead part 10B, a dielectric oxide film 11 formed on the valve element, a solid electrolyte layer 12 formed on the dielectric oxide film 11 and a charge collecting element for a cathode 13 formed on the solid electrolyte layer 12, wherein at least one through hole 15 is formed in the electrode lead part 10B so as to expose a core 10C of the valve metal element, and an exposed portion 10D of the core is used for connecting portion.
    Type: Application
    Filed: December 4, 2003
    Publication date: July 1, 2004
    Inventors: Koichi Hirano, Tsunenori Yoshida, Hiroyuki Handa, Yoshihisa Yamashita, Seiichi Nakatani
  • Patent number: 6734542
    Abstract: A component built-in module including a core layer formed of an electric insulating material, and an electric insulating layer and a plurality of wiring patterns, which are formed on at least one surface of the core layer. The electric insulating material of the core layer is formed of a mixture including at least an inorganic filler and a thermosetting resin. At least one or more of active components and/or passive components are contained in an internal portion of the core layer. The core layer has a plurality of wiring patterns and a plurality of inner vias formed of a conductive resin. The electric insulating material formed of the mixture including at least an inorganic filler and a thermosetting resin of the core layer has a modulus of elasticity at room temperature in the range from 0.6 GPa to 10 GPa. Thus, it is possible to provide a thermal conductive component built-in module capable of filling the inorganic filler with high density; burying the active component such as a semiconductor etc.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: May 11, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiichi Nakatani, Yasuhiro Sugaya, Toshiyuki Asahi, Shingo Komatsu
  • Publication number: 20040088416
    Abstract: A circuit component built-in module of the present invention includes an insulating substrate formed of a mixture comprising 70 wt % to 95 wt % of an inorganic filler and a thermosetting resin, a plurality of wiring patterns formed on at least a principal plane of the insulating substrate, a circuit component arranged in an internal portion of the insulating substrate and electrically connected to the wiring patterns, and an inner via formed in the insulating substrate for electrically connecting the plurality of wiring patterns. Thus, a highly reliable circuit component built-in module having high-density circuit components can be obtained.
    Type: Application
    Filed: June 25, 2003
    Publication date: May 6, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiichi Nakatani, Kouichi Hirano
  • Publication number: 20040084769
    Abstract: A semiconductor device (1) of the present invention includes a semiconductor element (103) including electrode parts (104), and a wiring substrate (108) including an insulation layer (101), electrode-part-connection electrodes (102) provided in the insulation layer (101), and external electrodes (107) that is provided in the insulation layer (101) and that is connected electrically with the electrode-part-connection electrodes (102), in which the electrode parts (104) and the electrode-part-connection electrodes (102) are connected electrically with each other. The insulation layer (101) has an elastic modulus measured according to JIS K6911 of not less than 0.1 GP a and not more than 5 GPa, and the electrodes (104) and the electrode-part-connection electrodes (102) are connected by metal joint.
    Type: Application
    Filed: October 24, 2003
    Publication date: May 6, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Yasuhiro Sugaya, Toshiyuki Asahi, Shingo Komatsu, Yoshiyuki Yamamoto, Seiichi Nakatani
  • Patent number: 6707671
    Abstract: In a power module, a wiring substrate to which a heat generating component is connected electrically and a heat sink are connected through the medium of a thermally conductive and electrically insulating member. The thermally conductive and electrically insulating member is a curable composition containing (A) a thermosetting resin, (B) a thermoplastic resin, (C) a latent curing agent, and (D) an inorganic filler. The thermally conductive and electrically insulating member is bonded to the heat generating component in such a manner as to be deformed complementarily to unevenness in shape and height of the heat generating component. Heat generated from the heat generating component is radiated by means of the heat sink. Thus, a power module that allows heat generated from an electronic component to be radiated evenly and efficiently and achieves high-density mounting, and a method of manufacturing the power module are provided.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 16, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Yamashita, Koichi Hirano, Seiichi Nakatani
  • Publication number: 20040047112
    Abstract: A capacitor is provided so as to include: a capacitor element including a dielectric layer, and an anode and a cathode that are arranged to support the dielectric layer therebetween; a planar anode terminal; and a planar cathode terminal. The anode terminal and the cathode terminal are led out from the capacitor element in a same direction so as to be in parallel with each other, and at least a part of the anode terminal and at least a part of the cathode terminal overlap each other without contact in a direction perpendicular to a terminal plane of at least one terminal selected from the anode terminal and the cathode terminal. A capacitor built-in board using the capacitor also is provided.
    Type: Application
    Filed: June 19, 2003
    Publication date: March 11, 2004
    Inventors: Tsunenori Yoshida, Mikinari Shimada, Hiroyuki Handa, Masaaki Kuranuki, Seiichi Nakatani, Akihiro Ishikawa
  • Publication number: 20040040740
    Abstract: At least two electric elements (203) such as semiconductor chips or surface acoustic wave devices are mounted on wiring patterns (201), and the electric elements (203) are sealed with a thermosetting resin composition (204). An upper surface of the at least two electric elements (203) and an upper surface of the thermosetting resin composition (204) are abraded at the same time, thereby forming surfaces substantially flush with each other. Since they are abraded while being sealed with the thermosetting resin composition (204), it is possible to reduce the thickness without damaging the electric elements (203). Also, the electric elements (203) and the wiring patterns (201) can be prevented from being contaminated by an abrasive liquid. In this manner, it is possible to obtain an electric element built-in module whose thickness can be reduced while maintaining its mechanical strength.
    Type: Application
    Filed: September 3, 2003
    Publication date: March 4, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiichi Nakatani, Yoshihiro Bessho, Yasuhiro Sugaya, Keiji Onishi
  • Patent number: 6700182
    Abstract: By providing an end portion of a radiation plate located on and near an end portion of an insulator sheet, to which a lead frame extends, at a position away from the end portion of the insulator sheet inside of the insulator sheet in a plane direction of the insulator sheet, it is possible to secure a creeping distance between the lead frame and the radiation plate without decreasing a lead frame area on which components can be actually mounted.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: March 2, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Yamashita, Koichi Hirano, Seiichi Nakatani, Mitsuhiro Matsuo
  • Patent number: 6692818
    Abstract: A method for manufacturing a circuit board with high thermal dissipation includes the following steps: preparing a thermal conductive resin composition including 70 to 95 mass % of an inorganic filler and 5 to 30 mass % of a resin composition that includes a liquid thermosetting resin, a thermoplastic resin powder, and a latent curing agent; bonding the thermal conductive resin composition and a metal foil together by heating at a temperature lower than a temperature at which the thermosetting resin starts to cure while applying pressure so that the thermal conductive resin composition increases in viscosity and thus is solidified irreversibly; providing holes and curing the thermosetting resin to form an insulating substrate; and forming through holes and a circuit pattern. This method can achieve improved productivity and low cost in processing the holes. It is preferable that the thermal conductive resin composition is integral with a reinforcing material.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: February 17, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Hirano, Yoshihisa Yamashita, Seiichi Nakatani
  • Publication number: 20040026780
    Abstract: A high-frequency semiconductor device is provided with a ceramic substrate, an element group including semiconductor elements and passive components mounted onto a bottom portion of the ceramic substrate, and a composite resin material layer formed on the bottom portion of the ceramic substrate so as to bury the element group. The composite resin material layer is formed by a composite resin material including an epoxy resin and an inorganic filler material, and has a flat bottom surface on which electrodes for connecting to the outside are formed. As packaging of a structure in which the receiving system and the transmitting system are formed in a single unit, such as an RF module, the high-frequency semiconductor device achieves a small size, a high mounting density, and excellent heat release properties.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 12, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideki Takehara, Noriyuki Yoshikawa, Kunihiko Kanazawa, Seiichi Nakatani
  • Patent number: 6666392
    Abstract: A composition for substrate materials according to the present invention includes 70-95 wt. % of inorganic powder and 5-30 wt. % of thermosetting resin composition and is in a finely crushed condition. The composition for substrate materials is prepared, for example, by crushing into fine pieces and mixing the inorganic powder and the thermosetting resin composition. A heat conductive substrate is provided with an insulator body formed by heating and pressurizing said composition for substrate materials and a wiring pattern is provided in such a condition that it is exposed on the surface of the insulator body. A process for manufacturing the heat conductive substrate comprises forming said composition for substrate materials into the insulator body by casting the above mentioned composition for substrate materials into a metal mold to be heated and pressurized so that said thermosetting resin is cured.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: December 23, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Hirano, Seiichi Nakatani, Hiroyuki Handa
  • Publication number: 20030230813
    Abstract: A method for manufacturing a circuit board with high thermal dissipation includes the following steps: preparing a thermal conductive resin composition including 70 to 95 mass % of an inorganic filler and 5 to 30 mass % of a resin composition that includes a liquid thermosetting resin, a thermoplastic resin powder, and a latent curing agent; bonding the thermal conductive resin composition and a metal foil together by heating at a temperature lower than a temperature at which the thermosetting resin starts to cure while applying pressure so that the thermal conductive resin composition increases in viscosity and thus is solidified irreversibly; providing holes and curing the thermosetting resin to form an insulating substrate; and forming through holes and a circuit pattern. This method can achieve improved productivity and low cost in processing the holes. It is preferable that the thermal conductive resin composition is integral with a reinforcing material.
    Type: Application
    Filed: June 19, 2003
    Publication date: December 18, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Hirano, Yoshihisa Yamashita, Seiichi Nakatani
  • Publication number: 20030222335
    Abstract: A circuit component package of the present invention includes a mounting member including a substrate and a wiring pattern provided on the substrate, a circuit component including a component body and an external electrode provided at an end of the component body, the circuit component being arranged on the mounting member, and a conductive material that electrically connects the external electrode with the wiring pattern. In the circuit component, the component body is shaped so that a first portion of the component body on which the external electrode is provided is thinner than a second portion of the component body, the second portion being a portion on which the external electrode is not provided, and further, the external electrode is arranged in a region on a side on which the component body is positioned with respect to a reference plane containing a predetermined surface of the component body.
    Type: Application
    Filed: May 29, 2003
    Publication date: December 4, 2003
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Koichi Hirano, Seiichi Nakatani, Hiroyuki Handa, Tsunenori Yoshida, Yoshihisa Yamashita, Hiroyuki Ishitomi