Patents by Inventor Seiyon Kim

Seiyon Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9012284
    Abstract: Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 21, 2015
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Kelin J. Kuhn, Seiyon Kim, Anand S. Murthy, Daniel B. Aubertine
  • Publication number: 20140326952
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 6, 2014
    Inventors: Kelin J. KUHN, Seiyon KIM, Rafael RIOS, Stephen M. Cea, Martin D. GILES, Annalisa CAPPELLANI, Titash RAKSHIT, Peter CHANG, Willy RACHMADY
  • Publication number: 20140264280
    Abstract: A nanowire device of the present description may be produced with the incorporation of at least one underlayer etch stop formed during the fabrication of at least one nanowire transistor in order to assist in protecting source structures and/or drain structures from damage that may result from fabrication processes. The underlayer etch stop may prevent damage to the source structures andor drain the structures, when the material used in the fabrication of the source structures andor the drain structures is susceptible to being etched by the processes used in the removal of the sacrificial materials, i.e. low selectively to the source structure and/or the drain structure materials, such that potential shorting between the transistor gate electrodes and contacts formed for the source structures andor the drain structures may be prevented.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Seiyon Kim, Daniel Aubertine, Kelin Kuhn, Anand Murthy
  • Publication number: 20140264253
    Abstract: A nanowire device of the present description may include a highly doped underlayer formed between at least one nanowire transistor and the microelectronic substrate on which the nanowire transistors are formed, wherein the highly doped underlayer may reduce or substantially eliminate leakage and high gate capacitance which can occur at a bottom portion of a gate structure of the nanowire transistors. As the formation of the highly doped underlayer may result in gate inducted drain leakage at an interface between source structures and drain structures of the nanowire transistors, a thin layer of undoped or low doped material may be formed between the highly doped underlayer and the nanowire transistors.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Seiyon Kim, Kelin Kuhn, Rafael Rios, Mark Armstrong
  • Publication number: 20140262707
    Abstract: Nanowire-based mechanical switching devices are described. For example, a nanowire relay includes a nanowire disposed in a void disposed above a substrate. The nanowire has an anchored portion and a suspended portion. A first gate electrode is disposed adjacent the void, and is spaced apart from the nanowire. A first conductive region is disposed adjacent the first gate electrode and adjacent the void, and is spaced apart from the nanowire.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Chytra Pawashe, Kevin Lin, Anurag Chaudhry, Raseong Kim, Seiyon Kim, Kelin Kuhn, Sasikanth Manipatruni, Rafael Rios, Ian A. Young
  • Publication number: 20140209855
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 31, 2014
    Inventors: Stephen M. Cea, Cory E. Weber, Patrick H. Keys, Seiyon Kim, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20140197377
    Abstract: Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 17, 2014
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Annalisa Cappellani, Stephen M. Cea, Rafael Rios, Glenn A. Glass
  • Patent number: 8753942
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 17, 2014
    Assignee: Intel Corporation
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Publication number: 20140131660
    Abstract: Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
    Type: Application
    Filed: December 23, 2011
    Publication date: May 15, 2014
    Inventors: Stephen M. Cea, Seiyon Kim, Annalisa Cappellani
  • Publication number: 20140042386
    Abstract: Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
    Type: Application
    Filed: December 23, 2011
    Publication date: February 13, 2014
    Inventors: Stephen M. Cea, Annalisa Cappellani, Martin D. Giles, Rafael Rios, Seiyon Kim, Kelin J. Kuhn
  • Publication number: 20140001441
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20130320455
    Abstract: Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
    Type: Application
    Filed: December 20, 2011
    Publication date: December 5, 2013
    Inventors: Annalisa Cappellani, Stephen M. Cea, Tahir Ghani, Harry Gomez, Jack T. Kavalieros, Patrick H. Keys, Seiyon Kim, Kelin J. Kuhn, Aaron D. Lilak, Rafael Rios, Mayank Sahni
  • Publication number: 20130313513
    Abstract: Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
    Type: Application
    Filed: December 23, 2011
    Publication date: November 28, 2013
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Gopinath Bhimarasetti, Tahir Ghani, Seiyon Kim
  • Publication number: 20130161756
    Abstract: Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 27, 2013
    Inventors: Glenn A. Glass, Kelin J. Kuhn, Seiyon Kim, Anand S. Murthy, Daniel B. Aubertine
  • Publication number: 20120138886
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Patent number: 7560358
    Abstract: A method of preparing active silicon regions for CMOS or other devices includes providing a structure including a silicon substrate (210, 410) having formed thereon first and second silicon diffusion lines (110, 420), both of which include first and second silicon layers (211, 213, 421, 423), a silicon germanium layer (212, 422), and a mask layer (214, 424). The method further includes forming an oxide layer (430) in first and second regions of the structure, forming a polysilicon layer (510) over the oxide layer, removing the polysilicon layer from the first region and depositing oxide (610) therein in order to form an oxide anchor, removing the polysilicon layer from the second region, removing the silicon germanium layer, filling the first and second gaps with an electrically insulating material (910), and depositing oxide in the second region.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 14, 2009
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Peter L. D. Chang, Ibrahim Ban, Willy Rachmady
  • Publication number: 20090170279
    Abstract: A method of preparing active silicon regions for CMOS devices includes providing a structure including a silicon substrate (210, 410) having formed thereon first and second silicon diffusion lines (110, 420), both of which include first and second silicon layers (211, 213, 421, 423), a silicon germanium layer (212, 422), and an electrically insulating layer (214, 424). The method further includes forming an oxide layer (430) in first and second regions of the structure, forming a polysilicon layer (510) over the oxide layer, removing the polysilicon layer from the first region and depositing oxide (610) therein in order to form an oxide anchor, removing the polysilicon layer from the second region, removing the silicon germanium layer, filling the first and second gaps with an electrically insulating material (910), and depositing oxide in the second region.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Seiyon Kim, Peter L. D. Chang, Ibrahim Ban, Willy Rachmady
  • Publication number: 20080090348
    Abstract: Embodiments of methods and apparatus for a gate-assisted silicon-on-insulator on bulk wafer and its application to floating body cells are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 17, 2008
    Inventors: Peter L. D. Chang, Willy Rachmady, Seiyon Kim
  • Publication number: 20080023726
    Abstract: A method of forming a Schottky barrier contact to a semiconductor material, includes the following steps: depositing an iridium contact on a surface of the semiconductor material; and annealing the iridium contact to form a Schottky barrier contact to the semiconductor material. For an example of an iridium Schottky contact on an InAlAs semiconductor material, the annealing temperature is preferably in the range about 350° C. to 500° C.
    Type: Application
    Filed: May 24, 2007
    Publication date: January 31, 2008
    Inventors: Ilesanmi Adesida, Seiyon Kim, Liang Wang