Patents by Inventor Seiyon Kim

Seiyon Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10121861
    Abstract: A nanowire device of the present description may be produced with the incorporation of at least one hardmask during the fabrication of at least one nanowire transistor in order to assist in protecting an uppermost channel nanowire from damage that may result from fabrication processes, such as those used in a replacement metal gate process and/or the nanowire release process. The use of at least one hardmask may result in a substantially damage free uppermost channel nanowire in a multi-stacked nanowire transistor, which may improve the uniformity of the channel nanowires and the reliability of the overall multi-stacked nanowire transistor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 6, 2018
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Seiyon Kim, Kelin Kuhn, Willy Rachmady, Jack Kavalieros
  • Publication number: 20180261696
    Abstract: Methods of forming germanium channel structure are described. An embodiment includes forming a germanium fin on a substrate, wherein a portion of the germanium fin comprises a germanium channel region, forming a gate material on the germanium channel region, and forming a graded source/drain structure adjacent the germanium channel region. The graded source/drain structure comprises a germanium concentration that is higher adjacent the germanium channel region than at a source/drain contact region.
    Type: Application
    Filed: December 24, 2015
    Publication date: September 13, 2018
    Inventors: Glenn Glass, Karthik Jambunathan, Anand Murthy, Chandra Mohapatra, Seiyon Kim
  • Publication number: 20180261498
    Abstract: Related fields of the present disclosure are in the field of transistor devices, and in particular, FinFET device structures formed using aspect ratio trapping trench (ART) process techniques. For example, a FinFET device consistent with the present disclosure comprises a first fin structure including a first upper fin portion atop a first lower fin portion and a second fin structure including a second upper fin portion atop a second lower fin portion. The first and second upper fin structures include a Group IV material and the first and second lower fin structures include a Group III-V material.
    Type: Application
    Filed: December 26, 2015
    Publication date: September 13, 2018
    Inventors: Sanaz K. GARDNER, Willy RACHMADY, Van H. LE, Matthew V. METZ, Seiyon KIM, Ashish AGRAWAL, Jack T. KAVALIEROS
  • Patent number: 10074573
    Abstract: Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: September 11, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Annalisa Cappellani, Stephen M. Cea, Rafael Rios, Glenn A. Glass
  • Publication number: 20180226496
    Abstract: A transistor having an ultra thin fin profile and its method of fabrication is described. The transistor comprises a semiconductor substrate having an insulation layer formed on a semiconductor substrate. A fin extends from the semiconductor substrate. The fin has a subfin portion on the semiconductor substrate and an active fin portion on the subfin portion. The subfin portion is disposed in a trench formed in the insulation layer. The subfin portion comprises a III-V semiconductor material and the active fin portion comprises a group IV semiconductor material.
    Type: Application
    Filed: December 22, 2015
    Publication date: August 9, 2018
    Inventors: Sanaz K. GARDNER, Willy RACHMADY, Van H. LE, Matthew V. METZ, Seiyon KIM, Ashish AGRAWAL, Jack T. KAVALIEROS
  • Publication number: 20180204932
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Application
    Filed: June 17, 2015
    Publication date: July 19, 2018
    Inventors: Rishabh MEHANDRU, Partick MORROW, Ranjith KUMAR, Cory E. WEBER, Seiyon KIM, Stephen M. CEA, Tahir GHANI
  • Patent number: 10026829
    Abstract: Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: July 17, 2018
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Stephen M. Cea, Tahir Ghani, Harry Gomez, Jack T. Kavalieros, Patrick H. Keys, Seiyon Kim, Kelin J. Kuhn, Aaron D. Lilak, Rafael Rios, Mayank Sahni
  • Publication number: 20180158933
    Abstract: A method including forming a non-planar conducting channel of a device between junction regions on a substrate, the substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage; and forming a gate stack on the channel, the gate stack including a dielectric material and a gate electrode. A method including forming a buffer material on a semiconductor substrate, the buffer material including a semiconductor material including a different lattice structure than the substrate; forming a blocking material on the buffer material, the blocking material including a property to inhibit carrier leakage; and forming a transistor device on the substrate. An apparatus including a non-planar multi-gate device on a substrate including a transistor device including a channel disposed on a substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage.
    Type: Application
    Filed: June 27, 2015
    Publication date: June 7, 2018
    Inventors: Van H. LE, Gilbert DEWEY, Benjamin CHU-KUNG, Ashish AGRAWAL, Matthew V. METZ, Willy RACHMADY, Marc C. FRENCH, Jack T. KAVALIEROS, Rafael RIOS, Seiyon KIM, Seung Hoon SUNG, Sanaz K. GARDNER, James M. POWERS, Sherry R. TAFT
  • Publication number: 20180158737
    Abstract: A method including forming a fin of a nonplanar device on a substrate, the fin including a second layer between a first layer and a third layer; replacing the second layer with a dielectric material; and forming a gate stack on a channel region of the fin. An apparatus including a first multigate device on a substrate including a fin including a conducting layer on a dielectric layer, a gate stack disposed on the conducting layer in a channel region of the fin, and a source and a drain formed in the fin, and a second multigate device on the substrate including a fin including a first conducting layer and a second conducting layer separated by a dielectric layer, a gate stack disposed the first conducting layer and the second conducting layer in a channel region of the fin, and a source and a drain formed in the fin.
    Type: Application
    Filed: June 27, 2015
    Publication date: June 7, 2018
    Inventors: Seiyon KIM, Jack T. KAVALIEROS, Anand S. MURTHY, Glenn A. GLASS, Karthik JAMBUNATHAN
  • Publication number: 20180151702
    Abstract: A method including forming a non-planar conducting channel of a multi-gate device on a substrate, the channel including a height dimension defined from a base at a surface of the substrate; modifying less than an entire portion of the channel; and forming a gate stack on the channel, the gate stack including a dielectric material and a gate electrode. An apparatus including a non-planar multi-gate device on a substrate including a channel including a height dimension defining a conducting portion and an oxidized portion and a gate stack disposed on the channel, the gate stack including a dielectric material and a gate electrode.
    Type: Application
    Filed: June 27, 2015
    Publication date: May 31, 2018
    Inventors: Seiyon KIM, Gopinath BHIMARASETTI, Rafael RIOS, Jack T. KAVALIEROS, Tahir GHANI, Anand S. MURTHY, Rishabh MEHANDRU
  • Publication number: 20180122901
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Seiyon KIM, Kelin J. KUHN, Tahir GHANI, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Patent number: 9947805
    Abstract: Nanowire-based mechanical switching devices are described. For example, a nanowire relay includes a nanowire disposed in a void disposed above a substrate. The nanowire has an anchored portion and a suspended portion. A first gate electrode is disposed adjacent the void, and is spaced apart from the nanowire. A first conductive region is disposed adjacent the first gate electrode and adjacent the void, and is spaced apart from the nanowire.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: April 17, 2018
    Assignee: Intel Corporation
    Inventors: Chytra Pawashe, Kevin Lin, Anurag Chaudhry, Raseong Kim, Seiyon Kim, Kelin Kuhn, Sasikanth Manipatruni, Rafael Rios, Ian A. Young
  • Patent number: 9935205
    Abstract: A nanowire transistor of the present description may be produced with internal spacers formed by using sacrificial spacers during the fabrication thereof. Once the nanowire transistor is formed, the sacrificial spacers, which are position between the transistor gate and the source and drains (respectively), may be removed. The sacrificial material between channel nanowires of the nanowire transistor may then be removed and a dielectric material may be deposited to fill the spaces between the channel nanowires. The dielectric material not between the channel nanowires may be removed to form the internal spacers. External spacers, which are position between the transistor gate and the source and drains (respectively), may then be formed adjacent the internal spacers and transistor channel nanowires.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Daniel A. Simon, Nadia M. Rahhal-Orabi, Chul-Hyun Lim, Kelin J. Kuhn
  • Patent number: 9926193
    Abstract: Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 27, 2018
    Assignee: Intel Corporation
    Inventors: Jorge A. Munoz, Dmitri E. Nikonov, Kelin J. Kuhn, Patrick Theofanis, Chytra Pawashe, Kevin Lin, Seiyon Kim
  • Patent number: 9905650
    Abstract: Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 27, 2018
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Seiyon Kim, Annalisa Cappellani
  • Patent number: 9893167
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing photo-definable spacer material in dimples etched adjacent to the channel region. Photo-definable material remains in the dimples by altering the etch characteristics of material outside of the dimples and selectively removing altered photo-definable material outside of the dimples.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: February 13, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Daniel A. Simon, Kelin J. Kuhn, Curtis W. Ward
  • Patent number: 9882053
    Abstract: An embodiment concerns selective etching of a structure (e.g., a fin) to form a void with the shape of the original structure. This void then functions as a mold. Flowable dielectric material fills the void to form the same shape as the original structure/mold. Post-processing then occurs (e.g., oxidation build up and annealing) to harden the dielectric in the void. The resulting product is a molded dielectric nanostructure that has the same shape as the original structure but consists of a different material (e.g., dielectric instead of silicon). Other embodiments are described herein.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: January 30, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn
  • Patent number: 9859368
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20170358658
    Abstract: Embodiments of the invention include metal oxide metal field effect transistors (MOMFETs) and methods of making such devices. In embodiments, the MOMFET device includes a source and a drain with a channel disposed between the source and the drain. According to an embodiment, the channel has at least one confined dimension that produces a quantum confinement effect in the channel. In an embodiment, the MOMFET device also includes a gate electrode that is separated from the channel by a gate dielectric. According to embodiments, the band-gap energy of the channel may be modulated by changing the size of the channel, the material used for the channel, and/or the surface termination applied to the channel. Embodiments also include forming an type device and a P-type device by controlling the work-function of the source and drain relative to the conduction band and valance band energies of the channel.
    Type: Application
    Filed: September 26, 2014
    Publication date: December 14, 2017
    Inventors: Rafael RIOS, Kelin J. KUHN, Seiyon KIM, Justin R. Weber
  • Patent number: 9825130
    Abstract: A nanowire device of the present description may include a highly doped underlayer formed between at least one nanowire transistor and the microelectronic substrate on which the nanowire transistors are formed, wherein the highly doped underlayer may reduce or substantially eliminate leakage and high gate capacitance which can occur at a bottom portion of a gate structure of the nanowire transistors. As the formation of the highly doped underlayer may result in gate inducted drain leakage at an interface between source structures and drain structures of the nanowire transistors, a thin layer of undoped or low doped material may be formed between the highly doped underlayer and the nanowire transistors.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin Kuhn, Rafael Rios, Mark Armstrong