Patents by Inventor Seong-Yeol Mun

Seong-Yeol Mun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105755
    Abstract: SiGe photodiode for crosstalk reduction. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array disposed in a semiconductor material. Each pixel includes a plurality of photodiodes. The plurality of pixels are configured to receive an incoming light through an illuminated surface of the semiconductor material. Each pixel includes a first photodiode comprising a silicon (Si) material; and a second photodiode having the Si material and a silicon germanium (SiGe) material.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Inventors: Heesoo Kang, Bill Phan, Seong Yeol Mun
  • Patent number: 11901383
    Abstract: Methods of forming transistors include providing a substrate material, forming a recess to a first depth in the substrate material, the recess corresponding to a gate region and extending in a channel length direction and a channel width direction that is perpendicular to the channel length direction, forming a trench structure in the substrate material by deepening the recess to a second depth using an isotropic process, forming an isolation layer on the substrate material, forming a gate portion of the isolation layer on the substrate material such that the gate portion of the isolation layer extends into the trench structure, and forming a gate on the isolation layer such that the gate extends into the trench structure.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: February 13, 2024
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Seong Yeol Mun, Young Woo Jung
  • Patent number: 11876110
    Abstract: SiGe photodiode for crosstalk reduction. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array disposed in a semiconductor material. Each pixel includes a plurality of photodiodes. The plurality of pixels are configured to receive an incoming light through an illuminated surface of the semiconductor material. Each pixel includes a first photodiode comprising a silicon (Si) material; and a second photodiode having the Si material and a silicon germanium (SiGe) material.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 16, 2024
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Heesoo Kang, Bill Phan, Seong Yeol Mun
  • Patent number: 11869906
    Abstract: A pixel cell with an elevated floating diffusion region is formed to reduce diffusion leakage (e.g., gate induced drain leakage, junction leakage, etc.). The floating diffusion region can be elevated by separating a doped floating diffusion region from the semiconductor substrate by disposing an intervening layer (e.g., undoped, lightly doped, etc.) on the semiconductor substrate and beneath the doped floating diffusion region. For instance, the elevated floating diffusion region can be formed by stacked material layers composed of a lightly or undoped base or intervening layer and a heavy doped (e.g., As doped) “elevated” layer. In some examples, the stacked material layers can be formed by first and second epitaxial growth layers.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: January 9, 2024
    Assignee: OmniVision Technologies, Inc.
    Inventors: Seong Yeol Mun, Heesoo Kang
  • Patent number: 11862509
    Abstract: A shallow trench isolation (STI) structure and method of fabrication includes forming a shallow trench isolation (STI) structure having a polygonal shaped cross-section in a semiconductor substrate of an image sensor includes a two-step etching process. The first step is a dry plasma etch that forms a portion of the trench to a first depth. The second step is a wet etch process that completes the trench etching to the desired depth and cures damage caused by the dry etch process. A CMOS image sensor includes a semiconductor substrate having a photodiode region and a pixel transistor region separated by a shallow trench isolation (STI) structure having a polygonal shaped cross-section.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 2, 2024
    Assignee: OmniVision Technologies, Inc.
    Inventors: Seong Yeol Mun, Heesoo Kang, Xiang Zhang
  • Patent number: 11810928
    Abstract: CMOS image sensor with LED flickering reduction and low color cross-talk are disclosed. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array that is disposed in a semiconductor substrate. Each pixel includes a plurality of large subpixels (LPDs) and at least one small subpixel (SPD). A plurality of color filters are disposed over individual subpixels. Each individual SPD is laterally adjacent to at least one other SPD.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 7, 2023
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Bill Phan, Seong Yeol Mun, Yuanliang Liu, Alireza Bonakdar, Chengming Liu, Zhiqiang Lin
  • Patent number: 11705475
    Abstract: A method of fabricating a target shallow trench isolation (STI) structure between devices in a wafer-level image sensor having a large number of pixels includes etching a trench, the trench having a greater depth and width than a target STI structure and epitaxially growing the substrate material in the trench for a length of time necessary to provide the target depth and width of the isolation structure. An STI structure formed in a semiconductor substrate includes a trench etched in the substrate having a depth and width greater than that of the STI structure, and semiconductor material epitaxially grown in the trench to provide a critical dimension and target depth of the STI structure. An image sensor includes a semiconductor substrate, a photodiode region, a pixel transistor region and an STI structure between the photodiode region and the pixel transistor region.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: July 18, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventor: Seong Yeol Mun
  • Publication number: 20230223416
    Abstract: A reduced cross-talk pixel-array substrate includes a semiconductor substrate, a buffer layer, a metal annulus, and an attenuation layer. The semiconductor substrate includes a first photodiode region. A back surface of the semiconductor substrate forms a trench surrounding the first photodiode region in a cross-sectional plane parallel to a first back-surface region of the back surface above the first photodiode region. The buffer layer is on the back surface and has a feature located above the first photodiode region with the feature being one of a recess and an aperture. The metal annulus is on the buffer layer and covers the trench. The attenuation layer is above the first photodiode region.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Inventors: Seong Yeol MUN, Bill PHAN, Duli MAO
  • Patent number: 11700464
    Abstract: A pixel cell includes a nitrogen-implanted region at a semiconductor material-gate oxide proximate interface located in a region above a photodiode. The pixel cell is further devoid of implanted nitrogen in channel regions of a plurality of pixel transistors. Thus, Si—N bonds are formed at the semiconductor material-gate oxide interface in the region above the photodiode, while the channel regions are protected from nitrogen implantation at the semiconductor material-gate oxide interface. Methods of forming the pixel cell are also described.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: July 11, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventor: Seong Yeol Mun
  • Publication number: 20230215890
    Abstract: A backside-illuminated image sensor includes arrayed photodiodes separated by isolation structures, and interlayer dielectric between first layer of metal interconnect and substrate. The image sensor has barrier metal walls in the interlayer dielectric between isolation structures and first layer interconnect, the barrier metal walls aligned with the isolation structures and disposed between the isolation structures and first layer interconnect. The barrier metal wall deflects light passing through photodiodes of the sensor that would otherwise be reflected by interconnect into different photodiodes.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 6, 2023
    Inventors: Seong Yeol MUN, Duli MAO, Bill PHAN
  • Patent number: 11695030
    Abstract: A pixel-array substrate includes a semiconductor substrate, a buffer layer, and a metal annulus. The semiconductor substrate includes a first-photodiode region. A back surface of the semiconductor substrate forms a trench surrounding the first-photodiode region in a cross-sectional plane parallel to a first back-surface region of the back surface above the first-photodiode region. The buffer layer is on the back surface and has (i) a thin buffer-layer region located above the first-photodiode region and (ii) a thick buffer-layer region forming an annulus above the trench in a plane parallel to the cross-sectional plane. The metal annulus is on the buffer layer and covers the thick buffer-layer region.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: July 4, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventor: Seong Yeol Mun
  • Publication number: 20230154960
    Abstract: A dark-current-inhibiting image sensor includes a semiconductor substrate, a thin and a thin junction. The semiconductor substrate includes a front surface, a back surface opposite the front surface, a photodiode, and a concave surface between the front surface and the back surface. The concave surface extends from the back surface toward the front surface, and defines a trench that surrounds the photodiode in a cross-sectional plane parallel to the back surface. The thin junction extends from the concave surface into the semiconductor substrate, and is a region of the semiconductor substrate. The semiconductor substrate includes a first substrate region, located between the thin junction and the photodiode, that has a first conductive type. The photodiode and the thin junction have a second conductive type opposite the first conductive type.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 18, 2023
    Inventors: Yifei DU, Zhiqiang LIN, Hui ZANG, Seong Yeol MUN
  • Patent number: 11647300
    Abstract: A pixel array for a high definition (HD) image sensor is disclosed. The pixel array includes a number of split pixel cells each including a first photodiode and a second photodiode that is more sensitive to incident light than the first photodiode. The first photodiode can be used to sense bright or high intensity light conditions, while the second photodiode can be used to sense low to medium intensity light conditions. In the disclosed pixel array, the sensitivity of one or more photodiodes is reduced by application of a light attenuation layer over the first photodiode of each split pixel cell. In accordance with methods of the disclosure, the light attenuation layer can be formed prior to the formation of a metal, optical isolation grid structure. This can lead to better control of the thickness and uniformity of light attenuation layer.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 9, 2023
    Assignee: Omnivision Technologies, Inc.
    Inventor: Seong Yeol Mun
  • Patent number: 11626433
    Abstract: Image sensors include a photodiode disposed in a semiconductor substrate and a transistor operatively coupled to the photodiode. At least three substrate trench structures are formed in the semiconductor substrate, defining two nonplanar structures, each having a plurality of sidewall portions. An isolation layer includes at least three isolation layer trench structures, each being disposed in a respective one of the three substrate trench structures. A gate includes three fingers, each being disposed in a respective one of the three isolation layer trench structures. An electron channel of the transistor extends along the plurality of sidewall portions of the two nonplanar structures in a channel width plane.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 11, 2023
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sing-Chung Hu, Seong Yeol Mun, Bill Phan
  • Patent number: 11616088
    Abstract: Image sensors include a photodiode disposed in a semiconductor substrate and a transistor operatively coupled to the photodiode. The transistor includes a nonplanar structure disposed in the semiconductor substrate, which is bounded by two outer trench structures formed in the semiconductor substrate. Isolation deposits are disposed within the two outer trench structures formed in the semiconductor substrate. A gate includes a planar gate and two fingers extending into one of two inner trench structures formed in the semiconductor substrate between the nonplanar structure and a respective one of the two outer trench structures. This structure creates an electron channel extending along a plurality of sidewall portions of the nonplanar structure in a channel width plane.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: March 28, 2023
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sing-Chung Hu, Seong Yeol Mun, Bill Phan
  • Publication number: 20230067975
    Abstract: An image sensor comprises a first photodiode, a second photodiode, and a deep trench isolation structure. The first photodiode and the second photodiode are each disposed within a semiconductor substrate. The first photodiode is adjacent to the second photodiode. The deep trench isolation structure has a varying depth disposed within the semiconductor substrate between the first photodiode and the second photodiode. The DTI structure extends the varying depth from a first side of the semiconductor substrate towards a second side of the semiconductor substrate. The first side of the semiconductor substrate is opposite of the second side of the semiconductor substrate.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Seong Yeol Mun
  • Patent number: 11557620
    Abstract: A high k passivation layer, an anti-reflective coating layer, and a buffer layer are disposed over semiconductor substrate including photodiodes formed therein. Trenches are etched into the semiconductor substrate through the buffer layer, anti-reflective coating layer, and the high k passivation layer in a grid-like pattern surrounding each of the photodiodes in the semiconductor substrate. Another high k passivation layer lines an interior of the trenches in the semiconductor substrate. An adhesive and barrier layer is deposited over the high k passivation layer that lines the interior of the trenches. A deep trench isolation (DTI) structure is formed with conductive material deposited into the trenches over the adhesive and barrier layer to fill the trenches. A grid structure is formed over the DTI structure and above a plane of the buffer layer. The grid structure is formed with the conductive material.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: January 17, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventors: Seong Yeol Mun, Yibo Zhu, Keiji Mabuchi
  • Publication number: 20220399393
    Abstract: SiGe photodiode for crosstalk reduction. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array disposed in a semiconductor material. Each pixel includes a plurality of photodiodes. The plurality of pixels are configured to receive an incoming light through an illuminated surface of the semiconductor material. Each pixel includes a first photodiode comprising a silicon (Si) material; and a second photodiode having the Si material and a silicon germanium (SiGe) material.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Heesoo Kang, Bill Phan, Seong Yeol Mun
  • Patent number: 11527569
    Abstract: A pixel cell includes a plurality of subpixels to generate image charge in response to incident light. The subpixels include an inner subpixel laterally surrounded by outer subpixels. A first plurality of transfer gates disposed proximate to the inner subpixel and a first grouping of outer subpixels. A first floating diffusion is coupled to receive the image charge from the first grouping of outer subpixels through a first plurality of transfer gates. A second plurality of transfer gates disposed proximate to the inner subpixel and the second grouping of outer subpixels. A second floating diffusion disposed in the semiconductor material and coupled to receive the image charge from each one of the second grouping of outer subpixels through the second plurality of transfer gates. The image charge in the inner subpixel is received by the first, second, or both floating diffusions through respective transfer gates.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: December 13, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Bill Phan, Keiji Mabuchi, Seong Yeol Mun, Yuanliang Liu, Vincent Venezia
  • Publication number: 20220367245
    Abstract: A shallow trench isolation (STI) structure and method of fabrication includes forming a shallow trench isolation (STI) structure having a polygonal shaped cross-section in a semiconductor substrate of an image sensor includes a two-step etching process. The first step is a dry plasma etch that forms a portion of the trench to a first depth. The second step is a wet etch process that completes the trench etching to the desired depth and cures damage caused by the dry etch process. A CMOS image sensor includes a semiconductor substrate having a photodiode region and a pixel transistor region separated by a shallow trench isolation (STI) structure having a polygonal shaped cross-section.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Seong Yeol MUN, Heesoo KANG, Xiang ZHANG