Patents by Inventor Serdar Aksu

Serdar Aksu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180171502
    Abstract: A method of electroplating on a workpiece having at least one sub-30 nm feature includes applying a first electrolyte chemistry to the workpiece, the chemistry including a metal cation solute species having a concentration in the range of about 50 mM to about 250 mM and a suppressor resulting in polarization greater than 0.75 V and reaching 0.75 V of polarization at a rate greater than 0.25 V/s, and applying an electric waveform, wherein the electric waveform includes a period of ramping up of current followed by a period of partial ramping down of current.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Applicant: APPLIED Materials, Inc.
    Inventors: Serdar Aksu, Jung Gu Lee, Bart Sakry, Roey Shaviv
  • Patent number: 10000860
    Abstract: A method of electroplating on a workpiece having at least one sub-30 nm feature includes applying a first electrolyte chemistry to the workpiece, the chemistry including a metal cation solute species having a concentration in the range of about 50 mM to about 250 mM and a suppressor resulting in polarization greater than 0.75 V and reaching 0.75 V of polarization at a rate greater than 0.25 V/s, and applying an electric waveform, wherein the electric waveform includes a period of ramping up of current followed by a period of partial ramping down of current.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 19, 2018
    Assignee: APPLIED Materials, Inc.
    Inventors: Serdar Aksu, Jung Gu Lee, Bart Sakry, Roey Shaviv
  • Patent number: 9840788
    Abstract: In accordance with one embodiment of the present disclosure, a method for depositing metal on a reactive metal film on a workpiece includes electrochemically depositing a metallization layer on a seed layer formed on a workpiece using a plating electrolyte having at least one plating metal ion, a pH range of about 6 to about 11 and applying a cathodic potential in the range of about ?1 V to about ?6 V. The workpiece includes a barrier layer disposed between the seed layer and a dielectric surface of the workpiece, the barrier layer including a first metal having a standard electrode potential more negative than 0 V and the seed layer including a second metal having a standard electrode potential more positive than 0 V.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: December 12, 2017
    Assignee: APPLIED Materials, Inc.
    Inventors: Roey Shaviv, Ismail T. Emesh, Dimitrios Argyris, Serdar Aksu
  • Patent number: 9828687
    Abstract: In accordance with one embodiment of the present disclosure, a method for depositing metal on a reactive metal film on a workpiece includes electrochemically depositing a metallization layer on a seed layer formed on a workpiece using a plating electrolyte having at least one plating metal ion, a pH range of about 1 to about 6, and applying a cathodic potential in the range of about ?0.5 V to about ?4 V. The workpiece includes a barrier layer disposed between the seed layer and a dielectric surface of the workpiece, the barrier layer including a first metal having a standard electrode potential more negative than 0 V and the seed layer including a second metal having a standard electrode potential more positive than 0 V.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 28, 2017
    Assignee: APPLIED Materials, Inc.
    Inventors: Roey Shaviv, Ismail T. Emesh, Dimitrios Argyris, Serdar Aksu
  • Publication number: 20150345045
    Abstract: In accordance with one embodiment of the present disclosure, a method for depositing metal on a reactive metal film on a workpiece includes electrochemically depositing a metallization layer on a seed layer formed on a workpiece using a plating electrolyte having at least one plating metal ion, a pH range of about 1 to about 6, and applying a cathodic potential in the range of about ?0.5 V to about ?4 V. The workpiece includes a barrier layer disposed between the seed layer and a dielectric surface of the workpiece, the barrier layer including a first metal having a standard electrode potential more negative than 0 V and the seed layer including a second metal having a standard electrode potential more positive than 0 V.
    Type: Application
    Filed: March 3, 2015
    Publication date: December 3, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Roey Shaviv, Ismail T. Emesh, Dimitrios Argyris, Serdar Aksu
  • Publication number: 20150348837
    Abstract: In accordance with one embodiment of the present disclosure, a method for depositing metal on a reactive metal film on a workpiece includes electrochemically depositing a metallization layer on a seed layer formed on a workpiece using a plating electrolyte having at least one plating metal ion, a pH range of about 6 to about 11 and applying a cathodic potential in the range of about ?1 V to about ?6 V. The workpiece includes a barrier layer disposed between the seed layer and a dielectric surface of the workpiece, the barrier layer including a first metal having a standard electrode potential more negative than 0 V and the seed layer including a second metal having a standard electrode potential more positive than 0 V.
    Type: Application
    Filed: March 3, 2015
    Publication date: December 3, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Roey Shaviv, Ismail T. Emesh, Dimitrios Argyris, Serdar Aksu
  • Patent number: 8444842
    Abstract: An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 21, 2013
    Assignee: SoloPower, Inc.
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Patent number: 8425753
    Abstract: The present invention provides a method and precursor structure to form a solar cell absorber layer. The method includes electrodepositing a first layer including a film stack including at least a first film comprising copper, a second film comprising indium and a third film comprising gallium, wherein the first layer includes a first amount of copper, electrodepositing a second layer onto the first layer, the second layer including at least one of a second copper-indium-gallium-ternary alloy film, a copper-indium binary alloy film, a copper-gallium binary alloy film and a copper-selenium binary alloy film, wherein the second layer includes a second amount of copper, which is higher than the first amount of copper, and electrodepositing a third layer onto the second layer, the third layer including selenium; and reacting the precursor stack to form an absorber layer on the base.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 23, 2013
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Mustafa Pinarbasi
  • Patent number: 8409418
    Abstract: The present invention provides a method and precursor structure to form a Group IBIIIAIVA solar cell absorber layer. The method includes forming a Group IBIIIAVIA compound layer on a base by forming a precursor layer on the base through electrodepositing three different films, and then reacting the precursor layer with selenium to form the Group IBIIIAVIA compound layer on the base. The three films, described by the precursor layer, include in one embodiment a first alloy film comprising copper, indium and gallium, a second alloy film comprising copper and selenium formed on the first alloy film; and a selenium film formed on the second alloy film.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 2, 2013
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Mustafa Pinarbasi
  • Patent number: 8404512
    Abstract: The present invention provides methods for forming a doped Group IBIIIAVIA absorber layer for a solar cell. The method includes forming precursor layers that include a dopant rich layer and then annealing the precursor layers. The annealing process results in dopants diffusing through the layers to an exterior surface. The annealing process is periodically halted to remove dopants from the exposed surface.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 26, 2013
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Mustafa Pinarbasi
  • Publication number: 20120309125
    Abstract: The present invention provides methods for forming a buffer layer for Group IBIIIAVIA solar cells. The buffer layer is formed using chemical bath deposition and the layer is formed in steps. A first buffer layer is formed on the absorber and the first buffer layer is then treated using etching, oxidizing, annealing or some combination thereof. Subsequently a second buffer layer is then positioned on the treated surface. Additional buffer layers can be added following treatment of the previously deposited layer.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Sarah Lastella, Mustafa Pinarbasi
  • Publication number: 20120288986
    Abstract: An electrochemical deposition method to form uniform and continuous Group IIIA material rich thin films with repeatability is provided. Such thin films are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the Group IIIA material rich thin film is deposited on an interlayer that includes 20-90 molar percent of at least one of In and Ga and at least 10 molar percent of an additive material including one of Cu, Se, Te, Ag and S. The thickness of the interlayer is adapted to be less than or equal to about 20% of the thickness of the Group IIIA material rich thin film.
    Type: Application
    Filed: January 10, 2012
    Publication date: November 15, 2012
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20120266958
    Abstract: Described are embodiments including an apparatus that provides a thin film solar cell base structure for a photovoltaic device, a method of manufacturing a photovoltaic device, a roll to roll method of manufacturing a thin film solar cell base structure, and a ruthenium alloy sheet material.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 25, 2012
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Sarah Lastella, Alan Kleiman-Shwarsctein, Shirish Pethe, Mustafa Pinarbasi
  • Publication number: 20120258567
    Abstract: The present invention provides a method to form Group IBIIIAVIA solar cell absorber layers on continuous flexible substrates. In a preferred aspect, the method forms a Group IBIIIAVIA absorber layer for manufacturing photovoltaic cells by providing a workpiece having a precursor layer formed over a substrate, the precursor layer including copper, indium, gallium, selenium and a dopant of a Group IA material; heating the precursor layer to a first temperature; reacting the precursor layer at the first temperature for a first predetermined time to transform the precursor layer to a partially formed absorber structure; cooling down the partially formed absorber structure to a second temperature, wherein both the first temperature and the second temperature are above 400° C.; and reacting the partially formed absorber structure at the second temperature for a second predetermined time, which is longer than the first predetermined time, to form a Group IBIIIAVIA absorber layer.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 11, 2012
    Applicant: SoloPower, Inc.
    Inventors: Serdar AKSU, Mustafa PINARBASI
  • Publication number: 20120214293
    Abstract: Aspects of the present inventions include an electrodeposition solution for deposition of a thin film that includes a Group VA material, a method of electroplating to deposit a thin film that includes a Group VA material, among others.
    Type: Application
    Filed: June 3, 2011
    Publication date: August 23, 2012
    Inventors: Serdar Aksu, Sarah Lastella, Mustafa Pinarbasi
  • Publication number: 20120199490
    Abstract: An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
    Type: Application
    Filed: November 29, 2011
    Publication date: August 9, 2012
    Applicant: SoloPower, Inc.
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20120175248
    Abstract: The present invention provides methods of electroplating a film or films onto a top surface of a continuously moving roll-to-roll sheet. In one aspect, the invention includes continuously electroplating a film onto a conductive surface using an electroplating unit as the roll-to-roll sheet moves therethrough.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: SoloPower, Inc.
    Inventors: Jorge Vasquez, Mustafa Pinarbasi, Satyaki Dutta, James Freitag, Serdar Aksu
  • Patent number: 8153469
    Abstract: The present invention provides a method to form Group IBIIIAVIA solar cell absorber layers on continuous flexible substrates. In a preferred aspect, the method forms a Group IBIIIAVIA absorber layer for manufacturing photovoltaic cells by providing a workpiece having a precursor layer formed over a substrate, the precursor layer including copper, indium, gallium and selenium; heating the precursor layer to a first temperature; reacting the precursor layer at the first temperature for a first predetermined time to transform the precursor layer to a partially formed absorber structure; cooling down the partially formed absorber structure to a second temperature, wherein both the first temperature and the second temperature are above 400° C.; and reacting the partially formed absorber structure at the second temperature for a second predetermined time, which is longer than the first predetermined time, to form a Group IBIIIAVIA absorber layer.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 10, 2012
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Yuriy Matus, Rasmi Das, Mustafa Pinarbasi
  • Patent number: 8092667
    Abstract: An electrochemical deposition method to form uniform and continuous Group IIIA material rich thin films with repeatability is provided. Such thin films are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the Group IIIA material rich thin film is deposited on an interlayer that includes 20-90 molar percent of at least one of In and Ga and at least 10 molar percent of an additive material including one of Cu, Se, Te, Ag and S. The thickness of the interlayer is adapted to be less than or equal to about 20% of the thickness of the Group IIIA material rich thin film.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 10, 2012
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20120003786
    Abstract: The present invention provides a method and precursor structure to form a solar cell absorber layer. The method includes forming a CIGS solar cell absorber on a base by depositing a first layer on the base, where in the first layer includes non-crystalline copper-selenide that is electrically nonconductive, and then heat treating the first layer at a first temperature range to transform the non-crystalline copper-selenide into a crystalline copper-selenide that is electrically conductive, thereby ensuring that the first layer becomes a first conductive layer. Thereafter, other steps follow to complete formation of the CIGS solar cell absorber.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 5, 2012
    Inventors: Serdar Aksu, Mustafa Pinarbasi