Patents by Inventor Sergio Tsuda

Sergio Tsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116140
    Abstract: A method of processing a transparent workpiece comprises directing a defect-forming laser beam to an impingement surface of a transparent workpiece, the defect-forming laser beam having a numerical aperture from 0.10 to 0.25, the transparent workpiece having a textured surface, the textured surface having an Ra value of greater than or equal to 0.5 ?m.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 11, 2024
    Inventors: Sterling Michael Clarke, Reinhard Moritz Malchus, Sasha Marjanovic, Garrett Andrew Piech, Alranzo Boh Ruffin, Sergio Tsuda
  • Patent number: 11577981
    Abstract: A method of separating a transparent mother sheet includes contacting a first surface of the transparent mother sheet with an open ended pressure assembly including a pressure vessel shell, thereby forming a shell cavity defined by the first surface of the transparent mother sheet and the pressure vessel shell, where the transparent mother sheet comprises a damage path. The method also includes removing gas from the shell cavity through a fluid removal outlet extending through the pressure vessel shell to reduce a cavity pressure in the shell cavity, thereby applying stress to the damage path to separate a portion of the transparent mother sheet along the damage path.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: February 14, 2023
    Assignee: Corning Incorporated
    Inventors: Andreas Simon Gaab, Michael Albert Joseph, II, Albert Roth Nieber, John Charles Speeckaert, Sergio Tsuda, Heather Nicole Vanselous
  • Publication number: 20230025312
    Abstract: A method of marking an optical fiber that includes directing a laser beam onto a first colored layer of an optical fiber. The optical fiber includes a core and a cladding surrounding the core, the first colored layer surrounds the cladding, and the laser beam modifies the first colored layer to form one or more laser-modified regions along an outer surface of the first colored layer.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 26, 2023
    Inventors: Andres Covarrubias Jaramillo, John Randolph Phillips, Alranzo Boh Ruffin, Sergio Tsuda
  • Publication number: 20220339751
    Abstract: Processes and devices by which a brittle material substrate may be edge formed and finished to simultaneously remove corresponding damage remaining on the edges in the areas formed by cutting and separation while imposing a desired edge profile and achieving a desired mechanical edge strength. Processes of the present disclosure may include a chemical and mechanical brush polishing process configured to shape and/or polish a surface of one or more thin substrates. A plurality of substrates may be arranged in a stacked configuration, and engineered interposer devices may be arranged between the stacked substrates. The interposers may provide between the substrates and may direct filament placement during brushing so as to guide material removal on the substrate edges. Substrate edge profile shapes, including symmetric and asymmetric profiles, may be formed by strategic manipulation of interposer properties including dimensions, mechanical features, material properties, and positioning.
    Type: Application
    Filed: June 11, 2020
    Publication date: October 27, 2022
    Inventors: Jonas Bankaitis, Duc Anh Bui, Scott Steven Cronk, Christopher Paul Daigler, Christina Marie Laskowski, Neil Eugene Partridge, Uwe Stute, Sergio Tsuda, Chad Michael Wilcox
  • Publication number: 20220241902
    Abstract: A method of separating a transparent workpiece comprises depositing a sacrificial layer onto a textured surface of the transparent workpiece, the sacrificial layer comprising a refractive index that is less than or equal to a refractive index of the transparent workpiece and greater than or equal to a refractive index of air. A defect-forming laser beam is generated via an optical assembly and used to form a plurality of defects in the transparent workpiece through sacrificial layer. The defect forming laser beam either comprises a pulsed laser beam forming a laser beam focal line in the transparent workpiece or an optical power of greater than or equal a critical power level to induce Kerr effect self-focusing in the transparent workpiece. The transparent workpiece is separated along the contour.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 4, 2022
    Inventors: Garrett Andrew Piech, Sergio Tsuda
  • Publication number: 20220064062
    Abstract: Glass articles with protective films used for processing hard disk drive substrates and methods of forming glass articles with protective films used for processing hard disk drive substrates are provided herein. In one embodiment, a glass blank includes: a first surface, a second surface opposing the first surface, and an edge surface connecting the first surface and the second surface; wherein the first surface comprises a first coated portion and a first uncoated portion surrounding the first coated portion, wherein the first uncoated portion extends a first distance radially inward from the edge toward a center of the first surface, wherein the second surface comprises a second coated portion and a second uncoated portion surrounding the second coated portion, wherein the second uncoated portion extends a second distance radially inward from the edge toward a center of the second surface.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Inventors: Jonas Bankaitis, Alejandro Antonio Becker, Bradley Frederick Bowden, Yuvanash Kasinathan, Albert Roth Nieber, Garrett Andrew Piech, Sergio Tsuda, Kristopher Allen Wieland
  • Patent number: 11148225
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Patent number: 11130701
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than F D = ? ? ? w 0 , eff 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: September 28, 2021
    Assignee: Corning Incorporated
    Inventors: Ravindra Kumar Akarapu, Garrett Andrew Piech, Sergio Tsuda, James Andrew West
  • Patent number: 11054574
    Abstract: The methods of singulating an optical waveguide sheet that supports sheet optical waveguides include irradiating the optical waveguide sheet with a focused laser beam comprising ultrafast light pulses to form within the body of the optical waveguide sheet modified regions, which along with unmodified regions, that define a singulation line. The modified regions define modified sections that are spaced apart by the unmodified sections, which reside at locations of the sheet optical waveguides. The optical waveguide sheet is separated along the singulation line to form an optical waveguide substrate with substrate waveguides formed by sections of the sheet optical waveguides. The optical waveguide substrate has an end face with both smooth and rough sections. The substrate waveguides have end surfaces that terminate at the smooth sections, thereby enabling low-loss optical coupling to other optical components.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 6, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Davide Domenico Fortusini, Jason Grenier, Sergio Tsuda, Kristopher Allen Wieland
  • Patent number: 11001523
    Abstract: Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: May 11, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Johannes Moll, James Joseph Price, Alranzo Boh Ruffin, Sergio Tsuda, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20210017064
    Abstract: A method of separating a transparent mother sheet includes contacting a first surface of the transparent mother sheet with an open ended pressure assembly including a pressure vessel shell, thereby forming a shell cavity defined by the first surface of the transparent mother sheet and the pressure vessel shell, where the transparent mother sheet comprises a damage path. The method also includes removing gas from the shell cavity through a fluid removal outlet extending through the pressure vessel shell to reduce a cavity pressure in the shell cavity, thereby applying stress to the damage path to separate a portion of the transparent mother sheet along the damage path.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Andreas Simon Gaab, Michael Albert Joseph, II, Albert Roth Nieber, John Charles Speeckaert, Sergio Tsuda, Heather Nicole Vanselous
  • Publication number: 20200363583
    Abstract: The methods of singulating an optical waveguide sheet that supports sheet optical waveguides include irradiating the optical waveguide sheet with a focused laser beam comprising ultrafast light pulses to form within the body of the optical waveguide sheet modified regions, which along with unmodified regions, that define a singulation line. The modified regions define modified sections that are spaced apart by the unmodified sections, which reside at locations of the sheet optical waveguides. The optical waveguide sheet is separated along the singulation line to form an optical waveguide substrate with substrate waveguides formed by sections of the sheet optical waveguides. The optical waveguide substrate has an end face with both smooth and rough sections. The substrate waveguides have end surfaces that terminate at the smooth sections, thereby enabling low-loss optical coupling to other optical components.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Lars Martin Otfried Brusberg, Davide Domenico Fortusini, Jason Grenier, Sergio Tsuda, Kristopher Allen Wieland
  • Publication number: 20200331793
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than FD?w0,eff2/?, where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 22, 2020
    Inventors: Ravindra Kumar Akarapu, Garrett Andrew Piech, Sergio Tsuda, James Andrew West
  • Patent number: 10730783
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than F D ? ? ? ? w 0 , eff 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 4, 2020
    Assignee: Corning Incorporated
    Inventors: Ravindra Kumar Akarapu, Garrett Andrew Piech, Sergio Tsuda, James Andrew West
  • Patent number: 10611668
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Kamjula Pattabhirami Reddy, Pushkar Tandon, Sergio Tsuda, Natesan Venkataraman, Robert Stephen Wagner
  • Patent number: 10611667
    Abstract: The embodiments disclosed herein relate to methods, systems, and system components for creating and arranging small (micron and smaller) defects or perforations in transparent materials in a particular manner, and, more particularly, to the arrangement of these defects, each of which has an average crack length, in a predetermined spaced-apart relation (each defect separated from an adjacent defect by a predetermined distance) defining a contour in a transparent material to lower the relative interface fracture toughness for subsequent planned induced separation.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Albert Roth Nieber, Pushkar Tandon, Sergio Tsuda
  • Patent number: 10597321
    Abstract: Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 24, 2020
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, David Andrew Pastel, Garrett Andrew Piech, Jose Mario Quintal, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner, Andrea Nichole Yeary
  • Publication number: 20200055766
    Abstract: In some embodiments, a method of forming a glass article comprises perforating a glass substrate along a contour with a laser forming a plurality of perforations, such that the contour separates a first portion of the glass substrate from a second portion of the glass substrate. After perforating, thermal forming the glass substrate into a non-planar shape with a mold, and separating the first portion of the glass substrate from the second portion of the glass substrate.
    Type: Application
    Filed: April 24, 2018
    Publication date: February 20, 2020
    Inventors: Alejandro Antonio Becker, Michele Marie-Louise Fredholm, Thomas Hackert, Albert Roth Nieber, Sergio Tsuda
  • Patent number: 10442719
    Abstract: Processes of chamfering and/or beveling an edge of a glass or other substrate of arbitrary shape using lasers are described herein. Three general methods to produce chamfers on glass substrates are disclosed. The first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser. Treatment with the ultra-short laser may be optionally followed by a CO2 laser for fully automated separation. The second method is based on thermal stress peeling of a sharp edge corner, and it has been demonstrated to work with different combination of an ultrashort pulse and/or CO2 lasers. A third method relies on stresses induced by ion exchange to effect separation of material along a fault line produced by an ultra-short laser to form a chamfered edge of desired shape.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: October 15, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 10392290
    Abstract: Methods are provided for laser processing arbitrary shapes of molded 3D thin transparent brittle parts from substrates with particular interest in substrates formed from strengthened or non-strengthened Corning Gorilla® glass (all codes). The developed laser methods can be tailored for manual separation of the parts from the panel or full laser separation by thermal stressing the desired profile. Methods can be used to form 3D surfaces with small radii of curvature. The method involves the utilization of an ultra-short pulse laser that may be optionally followed by a CO2 laser for fully automated separation.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 27, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner