Patents by Inventor Sergio Tsuda

Sergio Tsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120216570
    Abstract: This disclosure describes a process for strengthening, by ion-exchange, the edges of an article separated from a large glass sheet after the sheet has been ion-exchanged to strengthen by exposing only the one or a plurality of the edges of the separated article to an ion-exchange medium (for example without limitation, a salt, paste, frit, glass) while the glass surface is maintained at temperatures less than 200° C.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 30, 2012
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Lisa Anne Moore, Alexander Mikhailovich Streltsov, Sergio Tsuda, Jonathan E. Walter
  • Publication number: 20120196071
    Abstract: Strengthened glass substrate sheets and methods of fabricating glass panels from glass substrate sheets are disclosed. In one embodiment, a method includes forming at least one series of holes through a thickness of the glass substrate sheet, wherein the at least one series of holes defines a perimeter of the glass panel to be separated from the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process, and separating the glass panel from the glass substrate sheet along the at least one series of holes. At least a portion of one or more edges of the glass panel has an associated edge compressive layer. In another embodiment, a strengthened glass substrate sheet includes at least one series of holes that defines a perimeter of one or more glass panels to be separated from the strengthened glass substrate sheet.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: Ivan A. Cornejo, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20120145331
    Abstract: A method of cutting an article (172) from a chemically strengthened glass substrate (110) includes generating a pulsed laser beam (108) from a laser source (106). The pulsed laser beam (108) may have a pulse duration of less than about 1000 fs and an output wavelength such that the chemically strengthened glass substrate (110) is substantially transparent to the pulsed laser beam (108). The pulsed laser beam (108) may be focused to form a beam waist (109) that is positioned in the same horizontal plane as an inner tensile region (124) of the chemically strengthened glass substrate (110). The beam waist (109) may be translated in a first pass along a cut line (116), wherein the beam waist (109) traverses an edge (111) of the chemically strengthened glass substrate. The beam waist (113) may then be translated in a second pass along the cut line (116) such that a crack (119) propagates from the edge (113) along the cut line (116) ahead of the translated beam waist (109) during the second pass.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 14, 2012
    Applicant: Kior, Inc,
    Inventors: Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20120135177
    Abstract: Methods for separating strengthened glass articles from glass substrate sheets and strengthened glass substrate sheets are described herein. In one embodiment, a method of separating a glass article from a glass substrate sheet includes forming at least one groove on at least one surface of the glass substrate sheet. The at least one groove continuously extends around a perimeter of the glass article and extends partially through a thickness of the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process and separating the glass article from the glass substrate sheet along the at least one groove such that one or more edges of the glass article are under compressive stress. In another embodiment, a strengthened glass substrate sheet includes an ion exchanged glass having one or more grooves in one or more strengthened surface layers, the one or more grooves defining glass articles.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Ivan A. Cornejo, Gregory Scott Glaesemann, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda, Michael Henry Wasilewski
  • Publication number: 20120048604
    Abstract: Glass interposer panels and methods for forming the same are described herein. The interposer panels include a glass substrate core formed from an ion-exchangeable glass. A first layer of compressive stress may extend from a first surface of the glass substrate into the thickness T of the glass substrate core to a first depth of layer D1. A second layer of compressive stress may be spaced apart from the first layer of compressive stress and extending from a second surface of the glass substrate core into the thickness T of the glass substrate core to a second depth of layer D2. A plurality of through-vias may extend through the thickness T of the glass substrate core. Each through-via is surrounded by an intermediate zone of compressive stress that extends from the first layer of compressive stress to the second layer of compressive stress adjacent to a sidewall of each through-via.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Ivan A. Cornejo, Sinue Gomez, James Micheal Harris, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20100279067
    Abstract: A glass sheet having enhanced edge strength. The glass sheet is down-drawn and has at least one laser-formed edge having a minimum edge strength of at least about 90 MPa. The laser-formed edge is substantially free of a chamfer or a bevel. The glass sheet can be strengthened after formation of the edge and is adaptable for use as a cover plate for display and touch screen applications, or as a display or touch screen for information-related terminal (IT) devices; as well as in other applications.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Inventors: Robert Sabia, Sergio Tsuda
  • Publication number: 20100210442
    Abstract: A method is provided for separating or dividing strengthened glass articles, particularly strengthened glass sheets, into at least two pieces, one of which has a predetermined shape and/or dimension. A flaw is initiated in the glass at a depth that is greater than the depth of the strengthened surface layer of the glass, and a vent extending from the flaw is created at a vent depth that is greater than the depth of and outside the strengthened surface layer to at least partially separate the glass. In one embodiment, the vent is generated by treating the glass with a laser to heat the glass to a temperature in a range from about 50° C. below the strain point of the glass up to a temperature between the strain point and the anneal point of the glass. A glass article having at least one strengthened surface and at least one edge having an average edge strength of at least 200 MPa is also described.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Sergio Tsuda
  • Patent number: 6674557
    Abstract: A long haul, broadband DWDM system that has been optimized by the proper selection of the distribution of total dispersion compensation. Dispersion compensation is utilized at both the receiver and transmitter ends. System performance is dependent on the ratio of compensation split between the transmitter and the receiver. A system operated in the nonlinear regime can be compensated to operate with low BER and with reduced penalties due to residual dispersion effects, even when the spread of total accumulated dispersion between the extreme channels in a broadband system exceeds 1,100 ps/nm.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Valeria L. DaSilva, Yanming Liu, Alan J. Lucero, Sergio Tsuda, Karin M. Ennser
  • Patent number: 6643057
    Abstract: A system and method for amplifying an optical signal within an optical waveguide amplifier including providing at least one optical waveguide amplifier having an input for receiving an optical source signal therein and an output, wherein a forward pumping direction extends from the input to the output and rearward pumping direction extends from the output to the input. The system also includes providing at least one excitation light source in optical communication with the optical waveguide amplifier and capable of generating at least one excitation light. The system further includes amplifying the source signal by pumping a first excitation light from the excitation light source in the rearward pumping direction, and amplifying the source signal by simultaneously pumping a second excitation light from the excitation light source in the forward direction.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: November 4, 2003
    Assignee: Corning Incorporated
    Inventors: Michael Vasilyev, Sergio Tsuda, Gregory G. Luther, Yongqian Liu
  • Publication number: 20020154389
    Abstract: A system and method for amplifying an optical signal within an optical waveguide amplifier including providing at least one optical waveguide amplifier having an input for receiving an optical source signal therein and an output, wherein a forward pumping direction extends from the input to the output and rearward pumping direction extends from the output to the input. The system also includes providing at least one excitation light source in optical communication with the optical waveguide amplifier and capable of generating at least one excitation light. The system further includes amplifying the source signal by pumping a first excitation light from the excitation light source in the rearward pumping direction, and amplifying the source signal by simultaneously pumping a second excitation light from the excitation light source in the forward direction.
    Type: Application
    Filed: February 26, 2001
    Publication date: October 24, 2002
    Inventors: Michael Vasilyev, Sergio Tsuda, Gregory G. Luther, Yongqian Liu
  • Patent number: 5701327
    Abstract: Low optical loss and simplified fabrication are achieved by a nonlinear reflector which incorporates one or more semiconductor quantum wells within an n half-wavelengths strain relief layer (where n is an odd integer greater than zero) that is formed on a standard semiconductor quarter wave stack reflector. Growth of the half-wavelength layer is controlled so that dislocations are formed in sufficient concentration at the interface region to act effectively as non-radiative recombination sources. After saturation, these recombination sources remove carriers in the quantum well before the next round trip of the optical pulse arrives in the laser cavity. The nonlinear reflector is suitable for laser modelocking at the high wavelengths associated with many currently contemplated telecommunications applications and provides, at such wavelengths, an intensity dependent response that permits it to be used for saturable absorption directly in a main oscillating cavity of a laser.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: December 23, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: John Edward Cunningham, William Young Jan, Wayne Harvey Knox, Sergio Tsuda