Patents by Inventor Seung-Ha Choi

Seung-Ha Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7833075
    Abstract: In a method for forming a metal line, a first metal layer and a second metal layer are deposited on a substrate. The first metal layer includes aluminum, and the second metal layer includes molybdenum. A photoresist pattern having a line-shape is formed on the second metal layer. The second metal layer is etched with a chlorine-containing etching gas using the photoresist pattern as a mask. The first metal layer is then etched with a mixture of a chlorine-containing gas and nitrogen gas and/or a mixture of a chlorine-containing gas and argon gas as an etching gas. Impurities such as chlorine ions are removed from the base substrate after etching the first metal layer with a fluorine-containing gas, hydrogen gas, or water vapor. A method for manufacturing a display substrate is disclosed using the method for forming a metal line to form source, drain, and gate electrodes and gate lines.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Seok Oh, Sang-Gab Kim, Shin-Il Choi, Hong-Kee Chin, Yu-Gwang Jeong, Seung-Ha Choi
  • Patent number: 7833850
    Abstract: A method of fabricating a thin film transistor includes forming a gate electrode on a substrate, forming a semiconductor layer on the gate electrode, forming a source electrode on the semiconductor layer, forming a drain electrode on the semiconductor layer spaced apart from the source electrode, forming a copper layer pattern on the source electrode and the drain electrode, exposing the copper layer pattern on the source electrode and the drain electrode to a fluorine-containing process gas to form a copper fluoride layer pattern thereon, and patterning the semiconductor layer.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin-IL Choi, Sang-Gab Kim, Hong-Kee Chin, Min-Seok Oh, Yu-Gwang Jeong, Seung-Ha Choi
  • Patent number: 7758760
    Abstract: A thin film transistor (TFT) array panel and method of manufacturing the same are provided. The method includes forming a semiconductor layer and an ohmic contact layer over a gate line, forming a conductive layer on the ohmic contact layer, forming a first photosensitive layer pattern on the conductive layer, etching the conductive layer using the first photosensitive layer pattern as an etching mask, etching the ohmic contact layer and the semiconductor layer by a fluorine-containing gas, a chloride-containing gas, and an oxygen (O2) gas using the first photosensitive layer pattern as an etching mask, removing the first photosensitive layer pattern to a predetermined thickness to form a second photosensitive layer pattern, and etching the conductive layer using the second photosensitive layer pattern as an etching mask to expose a part of the ohmic contact layer.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Ha Choi, Min-Seok Oh, Hong-Kee Chin, Sang-Gab Kim, Yu-Gwang Jeong
  • Publication number: 20100163862
    Abstract: A method of fabricating a thin film transistor array substrate is presented. The method entails forming a gate interconnection line on an insulating substrate, forming a gate insulating layer on the gate interconnection line, forming a semiconductor layer and a data interconnection line on the semiconductor layer, sequentially forming multiple passivation layers, etching the passivation layers down to a drain electrode that is an extension of the data interconnection line. The portion of the drain electrode that is exposed at this stage is a part of the drain electrode-pixel electrode contact portion. A pixel electrode is formed connected to the drain electrode. Two of the passivation layers have the same composition but are processed at different temperatures. A thin film transistor prepared in the above manner is also presented.
    Type: Application
    Filed: June 12, 2009
    Publication date: July 1, 2010
    Inventors: Dong-Ju YANG, Yu-Gwang Jeong, Ki-Yeup Lee, Sang-Gab Kim, Yun-Jong Yeo, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Jung-Suk Bang
  • Publication number: 20100148769
    Abstract: A non-contact plasma-monitoring apparatus and a non-contact plasma-monitoring method are provided. The non-contact plasma-monitoring apparatus is installed in a plasma processing apparatus including a processing chamber and a power supply unit and measures at least one of an electric field and a magnetic field, which are created around power supply wiring connecting the process chamber to the power supply unit, without physically contacting the power supply wiring.
    Type: Application
    Filed: September 30, 2009
    Publication date: June 17, 2010
    Inventors: SHIN-II CHOI, HONG-KEE CHIN, SANG-GAB KIM, KI-YEUP LEE, DONG-JU YANG, YU-GWANG JEONG, SEUNG-HA CHOI, YUN-JONG YEO, JI-YOUNG PARK, HYUNG-JUN KIM, SANG-SUN LEE
  • Publication number: 20100148182
    Abstract: A thin film transistor (TFT) substrate is provided in which a sufficiently large contact area between conductive materials is provided in a contact portion and a method of fabricating the TFT substrate. The TFT substrate includes a gate interconnection line formed on an insulating substrate, a gate insulating layer covering the gate interconnection line, a semiconductor layer arranged on the gate insulating layer, a data interconnection line including a data line, a source electrode and a drain electrode formed on the semiconductor layer, a first passivation layer formed on the data interconnection line and exposing the drain electrode, a second passivation layer formed on the first passivation film and a pixel electrode electrically connected to the drain electrode. An outer sidewall of the second passivation layer is positioned inside an outer sidewall of the first passivation layer.
    Type: Application
    Filed: April 24, 2009
    Publication date: June 17, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hong-Kee CHIN, Sang-Gab KIM, Woong-Kwon KIM, Yong-Mo CHOI, Seung-Ha CHOI, Shin-Il CHOI, Ho-Jun LEE, Jung-Suk BANG, Yu-Gwang JEONG
  • Publication number: 20100136775
    Abstract: Provided is a method for manufacturing a thin-film transistor substrate, in which the etching characteristics of an insulating film and a passivation layer are enhanced. The insulating film and the passivation layer are deposited by low temperature chemical vapor deposition. The method includes disposing a gate wiring on an insulating substrate; disposing a gate insulating film on the gate wiring; disposing a data wiring on the gate insulating film; disposing a passivation layer on the data wiring; and forming a contact hole by etching at least one of the gate insulating film and the passivation layer, wherein at least one of the gate insulating film and the passivation layer is disposed at a temperature of about 280° C. or below, and the forming of the contact hole is performed at a pressure of about 60 mT or below.
    Type: Application
    Filed: October 28, 2009
    Publication date: June 3, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung-Ha CHOI, Sang-Gab KIM, Bong-Kyu SHIN, Sang-Uk LIM, Jin-Ho JU, Sung-Hoon YANG, Sang-Woo WHANGBO, Jae-Ho CHOI, Ki-Yeup LEE, Yun-Jong YEO, Shin-Il CHOI, Dong-Ju YANG, Hong-Kee CHIN, Yu-Gwang JEONG
  • Publication number: 20100044717
    Abstract: After forming a signal line including aluminum, an upper layer of an oxide layer including aluminum that covers the signal line is formed in the same chamber and by using the same sputtering target as the signal line, or a buffer layer of an oxide layer including aluminum is formed in a contact hole exposing the signal line during the formation of the contact hole. Accordingly, the contact characteristic between an upper layer including indium tin oxide (“ITO”) or indium zinc oxide (“IZO”) and the signal line may be improved to enhance the adhesion therebetween while not increasing the production cost of the thin film transistor (“TFT”) array panel.
    Type: Application
    Filed: May 4, 2009
    Publication date: February 25, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung-Ha CHOI, Ki-Yeup LEE, Sang-Gab KIM, Shin-Il CHOI, Dong-Ju YANG, Hong-Kee CHIN, Yu-Gwang JEONG, Ji-Young PARK, Dong-Hoon LEE, Byeong-Beom KIM
  • Publication number: 20100032760
    Abstract: The present invention provides a thin-film transistor (TFT) substrate, which can be fabricated simply and at reduced cost, and a method of fabricating the TFT substrate. The TFT substrate includes: an insulating substrate; gate wiring that extends on the insulating substrate in a first direction; data wiring that extends on the gate wiring in a second direction, and includes a lower layer and an upper layer; and a semiconductor pattern that is disposed under the data wiring and has substantially the same shape as the data wiring except for a channel region, wherein root-mean-square roughness of a top surface of the data wiring is 3 nm or less.
    Type: Application
    Filed: July 24, 2009
    Publication date: February 11, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seung-Ha CHOI, Sang-Gab Kim, Shin-II Choi, Ki-Yeup Lee, Dong-Ju Yang, Hong-Kee Chin, Yu-Gwang Jeong
  • Patent number: 7638375
    Abstract: A method of manufacturing a TFT substrate includes: sequentially forming a transparent conductive layer and an opaque conductive layer on a substrate, patterning the transparent conductive layer and the opaque conductive layer by using a first mask to form a gate pattern including a pixel electrode, and forming a gate insulating layer and a semiconductor layer above the substrate. A contact hole is formed which exposes a portion of the pixel electrode and a semiconductor pattern using a second mask. A conductive layer is formed above the substrate and patterned to form a source/drain pattern including a drain electrode which overlaps a portion of the pixel electrode. Portions of the gate insulating layer and the opaque conductive layer above the pixel electrode are removed except a portion overlapping the drain electrode, by using a third mask.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Kee Chin, Yu-Gwang Jeong, Sang-Gab Kim, Joo-Han Kim, Joo-Ae Youn, Min-Seok Oh, Jong-Hyun Choung, Seung-Ha Choi
  • Publication number: 20090278126
    Abstract: A metal line substrate and a method of fabricating thereof, the metal line substrate including an insulating layer and a capping layer disposed on an insulating substrate, a trench defined by the insulating layer and the capping layer disposed on the insulating substrate, a seed layer pattern disposed on the insulating substrate, and a low-resistive conductive layer pattern disposed in the trench and contacting the seed layer pattern. The capping layer pattern includes a protrusion region which is in contact with the low-resistive conductive layer pattern.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 12, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Ju YANG, Sang-Gab KIM, Ki-Yeup LEE, Yun-Jong YEO, Shin-Il CHOI, Hong-Kee CHIN, Yu-Gwang JEONG, Seung-Ha CHOI
  • Publication number: 20090224257
    Abstract: A thin film transistor array panel includes a gate line formed on a substrate and including a gate electrode, a semiconductor layer formed on a surface of the substrate having the gate line, a data line formed on the semiconductor layer, insulatedly intersecting the gate line, and including a source electrode disposed on the gate electrode, a drain electrode separated from the source electrode by a channel, disposed on the gate electrode, and formed from the same layer as the data line, a passivation layer formed on the data line and the drain electrode and having a first contact hole exposing the drain electrode, and a pixel electrode formed on the passivation layer and contacting the drain electrode through the first contact hole.
    Type: Application
    Filed: February 20, 2009
    Publication date: September 10, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hong-Kee CHIN, Shin-Il CHOI, Sang-Gab KIM, Min-Seok OH, Yu-Gwang JEONG, Seung-Ha CHOI, Dong-Ju YANG
  • Publication number: 20090206343
    Abstract: In a display apparatus and a method of manufacturing the display apparatus, a first insulating layer having a trench and a second insulating layer having a via hole corresponding to the trench are formed on an array substrate. After forming a seed layer in the trench, a conductive layer is formed on the seed layer through a plating process, thereby forming the gate line, the gate electrode and the storage line accommodated in the trench and the via hole.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 20, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seung-Ha CHOI, Min-Seok OH, Sang-Gab KIM, Hong-Kee CHIN, Yu-Gwang JEONG
  • Publication number: 20090191655
    Abstract: A method of etching an amorphous silicon layer includes providing a substrate with an amorphous silicon layer formed thereon into an atmospheric pressure plasma etching device, providing a plasma generation gas and etching gas to a plasma generator of the atmospheric pressure plasma etching device and generating an atmospheric pressure plasma gas between two electrodes provided in the plasma generator in which the two electrodes face each other. The method further includes repeatedly passing the substrate through the plasma generator at a predetermined speed, thereby etching the amorphous silicon layer on the substrate by using the atmospheric pressure plasma gas generated from the plasma generator.
    Type: Application
    Filed: August 28, 2008
    Publication date: July 30, 2009
    Inventors: Shin-Il Choi, Sang-Gab Kim, Seung-Ha Choi, Gon-Ho Kim, Min-Seik Oh, Hong-Kee Chin, Yu-Gwang Jeong
  • Publication number: 20090184324
    Abstract: The present invention relates to a thin film transistor array panel and a manufacturing method thereof. The thin film transistor array panel according to the present invention includes a substrate, a light blocking member formed on the substrate, a gate line disposed on the light blocking member. The gate line and the light blocking member define a closed region A color filter is formed in the closed region and contacts the side surface of the gate line. A gate insulating layer is formed on the gate line and the color filter, a data line and a drain electrode are formed on the gate insulating layer, and a pixel electrode is connected to the drain electrode.
    Type: Application
    Filed: October 1, 2008
    Publication date: July 23, 2009
    Inventors: Min-Seok OH, Seung-Ha Choi, Yoon-Ho Kang, Hong-Kee Chin, Yu-Gwang Jeong
  • Publication number: 20090174834
    Abstract: One or more embodiments provide a liquid crystal display (LCD) including a thin-film transistor (TFT) with improved performance and a method of fabricating the LCD. In one embodiment, the LCD includes a gate electrode which is formed on an insulating substrate; an active layer which is formed on the gate electrode; an organic layer which is formed on the active layer and includes a first hole that exposes a source region and a second hole that exposes a drain region; a source electrode which fills the first hole; and a drain electrode which fills the second hole.
    Type: Application
    Filed: August 8, 2008
    Publication date: July 9, 2009
    Inventors: Seung-Ha CHOI, Min-Seok Oh, Yu-Gwang Jeong, Hong-Kee Chin, Shin-II Choi, Sang-Gab Kim, Kap-Soo Yoon, Doo-Hee Jung
  • Publication number: 20090173446
    Abstract: The present invention relates to a substrate support that facilitates aligning a substrate and prevents the substrate from being damaged by arc discharge in processing a substrate using plasma, a substrate processing apparatus including the substrate support, and a method of aligning the substrate. A substrate support, which includes a main body on which a substrate is placed and a subsidiary body disposed around the side of the main body and having a slope declining from a position above the main body to the upper side of the main body, is provided, such that it is easy to align the substrate and it is possible to damage due to arc discharge in processing the substrate using plasma.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 9, 2009
    Inventors: Dong-Ju Yang, Min-Seok Oh, Ki-Yeup Lee, Sang-Gab Kim, Shin-Il Choi, Hong-Kee Chin, Yu-Gwang Jeong, Seung-Ha Choi, Jae-Ho Jang
  • Publication number: 20090152635
    Abstract: Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 18, 2009
    Inventors: Yu-Gwang JEONG, Young-Wook Lee, Sang-Gab Kim, Woo-Geun Lee, Min-Seok Oh, Jang-Soo Kim, Kap-Soo Yoon, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Seung-Hwan Shim, Sung-Hoon Yang, Ki-Hun Jeong
  • Publication number: 20090115066
    Abstract: A metal wiring layer and a method of fabricating the metal wiring layer are provided. The method includes forming a dielectric layer on a substrate, forming a plurality of dielectric layer patterns and holes therein on the substrate by etching part of the dielectric layer, with a cross sectional area of the holes in the dielectric layer patterns decreasing with increasing distance away from the substrate and the holes exposing the substrate, forming a trench by etching a portion of the substrate exposed through the holes in the dielectric layer patterns, and forming a metal layer which fills the trench and the holes in the dielectric layer patterns. Thus, it is possible to prevent the occurrence of an edge build-up phenomenon by forming a metal layer in a plurality of holes in the dielectric layer patterns having a cross sectional area decreasing with increasing distance away from the substrate.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 7, 2009
    Inventors: Dong-Ju Yang, Shin-Il Choi, Sang-Gab Kim, Min-Seok Oh, Hong-Kee Chin, Ki-Yeup Lee, Yu-Gwang Jeong, Seung-Ha Choi
  • Publication number: 20090108265
    Abstract: A method of fabricating a thin film transistor includes forming a gate electrode on a substrate, forming a semiconductor layer on the gate electrode, forming a source electrode on the semiconductor layer, forming a drain electrode on the semiconductor layer spaced apart from the source electrode, forming a copper layer pattern on the source electrode and the drain electrode, exposing the copper layer pattern on the source electrode and the drain electrode to a fluorine-containing process gas to form a copper fluoride layer pattern thereon, and patterning the semiconductor layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 30, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shin-IL CHOI, Sang-Gab KIM, Hong-Kee CHIN, Min-Seok OH, Yu-Gwang JEONG, Seung-Ha CHOI