Patents by Inventor Seung-Hoon Sung

Seung-Hoon Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9922826
    Abstract: Embodiments of the present disclosure are directed towards an integrated circuit (IC) die. In embodiments, an IC die may include a semiconductor substrate, a group III-Nitride or II-VI wurtzite layer disposed over the semiconductor substrate, and a plurality of buffer structures at least partially embedded in the group III-Nitride or II-VI wurtzite layer. In some embodiments, each of the plurality of buffer structures may include a central member disposed over the semiconductor substrate, a lower lateral member disposed over the semiconductor substrate and extending laterally away from the central member, and an upper lateral member disposed over the central member and extending laterally from the central member in an opposite direction from the lower lateral member. The plurality of buffer structures may be positioned in a staggered arrangement to terminate defects of the group III-Nitride or II-VI wurtzite layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: March 20, 2018
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Robert S. Chau, Sanaz K. Gardner, Seung Hoon Sung
  • Publication number: 20180026097
    Abstract: The present description relates to n-channel gallium nitride transistors which include a recessed gate electrode, wherein the polarization layer between the gate electrode and the gallium nitride layer is less than about 1 nm. In additional embodiments, the n-channel gallium nitride transistors may have an asymmetric configuration, wherein a gate-to drain length is greater than a gate-to-source length. In further embodiment, the n-channel gallium nitride transistors may be utilized in wireless power/charging devices for improved efficiencies, longer transmission distances, and smaller form factors, when compared with wireless power/charging devices using silicon-based transistors.
    Type: Application
    Filed: December 18, 2014
    Publication date: January 25, 2018
    Applicant: INTEL CORPORATION
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Seung Hoon Sung, Sanaz K. Gardner, Robert S. Chau
  • Patent number: 9847432
    Abstract: Methods of forming high voltage (111) silicon nano-structures are described. Those methods and structures may include forming a III-V device layer on (111) surface of a silicon fin structure, forming a 2DEG inducing polarization layer on the III-V device layer, forming a source/drain material on a portion of the III-V device layer on terminal ends of the silicon fin. A middle portion of the silicon fin structure between the source and drain regions may be removed, and backfilled with a dielectric material, and then a gate dielectric and a gate material may be formed on the III-V device layer.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: December 19, 2017
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz Gardner, Benjamin Chu-Kung, Marko Radosavljevic, Seung Hoon Sung, Robert Chau
  • Publication number: 20170352532
    Abstract: Embodiments of the present disclosure are directed towards an integrated circuit (IC) die. In embodiments, an IC die may include a semiconductor substrate, a group III-Nitride or II-VI wurtzite layer disposed over the semiconductor substrate, and a plurality of buffer structures at least partially embedded in the group III-Nitride or II-VI wurtzite layer. In some embodiments, each of the plurality of buffer structures may include a central member disposed over the semiconductor substrate, a lower lateral member disposed over the semiconductor substrate and extending laterally away from the central member, and an upper lateral member disposed over the central member and extending laterally from the central member in an opposite direction from the lower lateral member. The plurality of buffer structures may be positioned in a staggered arrangement to terminate defects of the group III-Nitride or II-VI wurtzite layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 17, 2014
    Publication date: December 7, 2017
    Inventors: Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Robert S. CHAU, Sanaz K. GARDNER, Seung Hoon SUNG
  • Patent number: 9837499
    Abstract: Techniques related to III-N transistors having self aligned gates, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include a polarization layer between a raised source and a raised drain, a gate between the source and drain and over the polarization layer, and lateral epitaxial overgrowths over the source and drain and having and opening therebetween such that at least a portion of the gate adjacent to the polarization layer is aligned with the opening.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: December 5, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Seung Hoon Sung, Sanaz Gardner, Marko Radosavlijevic, Robert Chau
  • Publication number: 20170323946
    Abstract: A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Inventors: Han Wui THEN, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Sanaz GARDNER, Seung Hoon SUNG, Robert S. Chau
  • Patent number: 9806203
    Abstract: A III-N semiconductor channel is compositionally graded between a transition layer and a III-N polarization layer. In embodiments, a gate stack is deposited over sidewalls of a fin including the graded III-N semiconductor channel allowing for formation of a transport channel in the III-N semiconductor channel adjacent to at least both sidewall surfaces in response to a gate bias voltage. In embodiments, a gate stack is deposited completely around a nanowire including a III-N semiconductor channel compositionally graded to enable formation of a transport channel in the III-N semiconductor channel adjacent to both the polarization layer and the transition layer in response to a gate bias voltage.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Benjamin Chu-Kung, Seung Hoon Sung, Sanaz K. Gardner, Robert S. Chau
  • Publication number: 20170278959
    Abstract: The present description relates to a gallium nitride transistor which includes at least one source/drain structure having low contact resistance between a 2D electron gas of the gallium nitride transistor and the source/drain structure. The low contact resistance may be a result of at least a portion of the source/drain structure being a single-crystal structure abutting the 2D electron gas. In one embodiment, the single-crystal structure is grown with a portion of a charge inducing layer of the gallium nitride transistor acting as a nucleation site.
    Type: Application
    Filed: October 30, 2014
    Publication date: September 28, 2017
    Applicant: INTEL CORPORATION
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Seung Hoon Sung, Sanaz Gardner, Robert S. Chau
  • Publication number: 20170271448
    Abstract: Techniques are disclosed for forming a defect-free semiconductor structure on a dissimilar substrate with a multi-aspect ratio mask. The multi-aspect ratio mask comprises a first, second, and third layer formed on a substrate. The second layer has a second opening wider than a first opening and a third opening in the first and third layers, respectively. All three openings are centered along a common central axis. A semiconductor material is grown from the top surface of the substrate and laterally onto the top surface of the first layer within the second opening. The semiconductor material disposed within and vertically below the third opening is etched by using the third layer as an etch mask so that the remaining material that laterally overflowed onto the top surface of the first layer forms a remaining structure.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 21, 2017
    Inventors: Benjamin CHU-KUNG, Sherry R. TAFT, Van H. LE, Sansaptak DASGUPTA, Seung Hoon SUNG, Sanaz K. GARDNER, Matthew V. METZ, Marko RADOSAVLJEVIC, Han Wui THEN
  • Publication number: 20170256408
    Abstract: Trenches (and processes for forming the trenches) are provided that reduce or prevent crystaline defects in selective epitaxial growth of type III-V or Germanium (Ge) material (e.g., a “buffer” material) from a top surface of a substrate material. The defects may result from collision of selective epitaxial sidewall growth with oxide trench sidewalls. Such trenches include (1) a trench having sloped sidewalls at an angle of between 40 degrees and 70 degrees (e.g., such as 55 degrees) with respect to a substrate surface; and/or (2) a combined trench having an upper trench over and surrounding the opening of a lower trench (e.g., the lower trench may have the sloped sidewalls, short vertical walls, or tall vertical walls). These trenches reduce or prevent defects in the epitaxial sidewall growth where the growth touches or grows against vertical sidewalls of a trench it is grown in.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 7, 2017
    Inventors: Niloy MUKHERJEE, Niti GOEL, Sanaz K. GARDNER, Pragyansri PATHI, Matthew V. METZ, Sansaptak DASGUPTA, Seung Hoon SUNG, James M. POWERS, Gilbert DEWEY, Benjamin CHU-KUNG, Jack T. KAVALIEROS, Robert S. CHAU
  • Publication number: 20170236936
    Abstract: Techniques are disclosed for forming a GaN transistor on a semiconductor substrate. An insulating layer forms on top of a semiconductor substrate. A trench, filled with a trench material comprising a III-V semiconductor material, forms through the insulating layer and extends into the semiconductor substrate. A channel structure, containing III-V material having a defect density lower than the trench material, forms directly on top of the insulating layer and adjacent to the trench. A source and drain form on opposite sides of the channel structure, and a gate forms on the channel structure. The semiconductor substrate forms a plane upon which both GaN transistors and other transistors can form.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 17, 2017
    Inventors: Han Wui Then, Robert S. CHAU, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Seung Hoon SUNG, Sanaz GARDNER, Ravi PILLARISETTY
  • Publication number: 20170236704
    Abstract: III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
    Type: Application
    Filed: September 18, 2014
    Publication date: August 17, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Benjamin Chu-Kung, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20170236928
    Abstract: Transistors or transistor layers include an InAlN and AlGaN bi-layer capping stack on a 2DEG GaN channel, such as for GaN MOS structures on Si substrates. The GaN channel may be formed in a GaN buffer layer or stack, to compensate for the high crystal structure lattice size and coefficient of thermal expansion mismatch between GaN and Si. The bi-layer capping stack an upper InAlN layer on a lower AlGaN layer to induce charge polarization in the channel, compensate for poor composition uniformity (e.g., of Al), and compensate for rough surface morphology of the bottom surface of the InAlN material. It may lead to a sheet resistance between 250 and 350 ohms/sqr. It may also reduce bowing of the GaN on Si wafers during growth of the layer of InAlN material, and provide a AlGaN setback layer for etching the InAlN layer in the gate region.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 17, 2017
    Inventors: Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Sanaz K. GARDNER, Seung Hoon SUNG, Benjamin CHU-KUNG, Robert S. CHAU
  • Publication number: 20170221999
    Abstract: An insulating layer is conformally deposited on a plurality of mesa structures in a trench on a substrate. The insulating layer fills a space outside the mesa structures. A nucleation layer is deposited on the mesa structures. A III-V material layer is deposited on the nucleation layer. The III-V material layer is laterally grown over the insulating layer.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Seung Hoon Sung, Sanaz K. Gardner, Marko Radosavljevic, Benjamin Chu-Kung, Robert S. Chau
  • Publication number: 20170213892
    Abstract: A fin over an insulating layer on a substrate having a first crystal orientation is modified to form a surface aligned along a second crystal orientation. A device layer is deposited over the surface of the fin aligned along the second crystal orientation.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz K. Gardner, Benjamin Chu-Kung, Marko Radosavljevic, Seung Hoon Sung, Robert S. Chau
  • Patent number: 9716149
    Abstract: A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 25, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Benjamin Chu-Kung, Sanaz Gardner, Seung Hoon Sung, Robert S. Chau
  • Publication number: 20170207307
    Abstract: A trench comprising a portion of a substrate is formed. A nucleation layer is deposited on the portion of the substrate within the trench. A III-N material layer is deposited on the nucleation layer. The III-N material layer is laterally grown over the trench. A device layer is deposited on the laterally grown III-N material layer. A low defect density region is obtained on the laterally grown material and is used for electronic device fabrication of III-N materials on Si substrates.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 20, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz K. Gardner, Seung Hoon Sung, Marko Radosavljevic, Benjamin Chu-Kung, Sherry Taft, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20170207310
    Abstract: Techniques related to III-N transistors having self aligned gates, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include a polarization layer between a raised source and a raised drain, a gate between the source and drain and over the polarization layer, and lateral epitaxial overgrowths over the source and drain and having and opening therebetween such that at least a portion of the gate adjacent to the polarization layer is aligned with the opening.
    Type: Application
    Filed: August 13, 2014
    Publication date: July 20, 2017
    Inventors: Han Wui Then, Sansaptak Dasgupta, Seung Hoon Sung, Sanaz Gardner, Marko Radosavljevic, Robert Chau
  • Publication number: 20170194506
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 9698013
    Abstract: Trenches (and processes for forming the trenches) are provided that reduce or prevent crystaline defects in selective epitaxial growth of type III-V or Germanium (Ge) material (e.g., a “buffer” material) from a top surface of a substrate material. The defects may result from collision of selective epitaxial sidewall growth with oxide trench sidewalls. Such trenches include (1) a trench having sloped sidewalls at an angle of between 40 degrees and 70 degrees (e.g., such as 55 degrees) with respect to a substrate surface; and/or (2) a combined trench having an upper trench over and surrounding the opening of a lower trench (e.g., the lower trench may have the sloped sidewalls, short vertical walls, or tall vertical walls). These trenches reduce or prevent defects in the epitaxial sidewall growth where the growth touches or grows against vertical sidewalls of a trench it is grown in.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: July 4, 2017
    Assignee: Intel Corporation
    Inventors: Niloy Mukherjee, Niti Goel, Sanaz K. Gardner, Pragyansri Pathi, Matthew V. Metz, Sansaptak Dasgupta, Seung Hoon Sung, James M. Powers, Gilbert Dewey, Benjamin Chu-Kung, Jack T. Kavalieros, Robert S. Chau