Patents by Inventor Seunghun Hong

Seunghun Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040037959
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Application
    Filed: June 20, 2003
    Publication date: February 26, 2004
    Applicant: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Publication number: 20040028814
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN and kits for performing DPN.
    Type: Application
    Filed: June 2, 2003
    Publication date: February 12, 2004
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Patent number: 6635311
    Abstract: A method of direct-write nanolithography comprising: providing a solid substrate comprising a surface; providing a nanoscopic tip coated with patterning compound; and contacting the coated tip with the substrate, so that the patterning compound is delivered to the substrate so as to produce a desired pattern in submicrometer dimensions. Nanolithographic resolution can be affected by substrate grain size, diffusion rate of the patterning compound, tip-substrate contact time, the rate of transport of the patterning compound from the tip to the substrate, and tip sharpness. The method is a useful tool for fabrication of nanoscale structures.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: October 21, 2003
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Publication number: 20030157254
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substratte as “ink.” Capillary transport of molecules from the SPM tip to thee solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the facrication of a variety of microscale and nanoscale devices. The invention also provices substrates patterened by DPN, including submirocmeter combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Application
    Filed: November 22, 2002
    Publication date: August 21, 2003
    Applicant: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Publication number: 20030049381
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substratte as “ink.” Capillary transport of molecules from the SPM tip to thee solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the facrication of a variety of microscale and nanoscale devices. The invention also provices substrates patterened by DPN, including submirocmeter combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Application
    Filed: August 6, 2002
    Publication date: March 13, 2003
    Applicant: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Publication number: 20020122873
    Abstract: In one aspect, a method of nanolithography is provided using a driving force to control the movement of a deposition compound from a scanning probe microscope tip to a substrate. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
    Type: Application
    Filed: January 28, 2002
    Publication date: September 5, 2002
    Inventors: Chad A. Mirkin, Seunghun Hong, Vinayak P. Dravid
  • Publication number: 20020063212
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Application
    Filed: May 24, 2001
    Publication date: May 30, 2002
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong