Patents by Inventor Sey-Shing Sun

Sey-Shing Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9647208
    Abstract: Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 9, 2017
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Charles C. Kuo, Robert S. Chau, Eric R. Dickey, Michael Stephen Bowen, Sey-Shing Sun
  • Publication number: 20160079523
    Abstract: Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Inventors: Elijah V. Karpov, Brian S. Doyle, Charles C. Kuo, Robert S. Chau, Eric R. Dickey, Michael Stephen Bowen, Sey-Shing Sun
  • Patent number: 9231204
    Abstract: Embodiments include low voltage embedded memory having conductive oxide and electrode stacks. A material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 5, 2016
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Charles C. Kuo, Robert S. Chau, Eric R. Dickey, Michael Stephen Bowen, Sey-Shing Sun
  • Publication number: 20140092666
    Abstract: Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Elijah V. Karpov, Brian S. Doyle, Charles C. Kuo, Robert S. Chau, Eric R. Dickey, Michael Stephen Bowen, Sey-Shing Sun
  • Publication number: 20140030541
    Abstract: Passivation integration schemes and pad structures to reduce the stress gradients and/or improve the contact surface existing between the Al in the pad and the gold wire bond. One of the pad structures provides a plurality of recessed pad areas which are formed in a single aluminum pad. An oxide mesa can he provided under the aluminum pad. Another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a copper pad and a plurality of trench/via pads. Still another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a portion of a copper pad, such that the aluminum pad and the copper pad are staggered relative to each other.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: LSI CORPORATION
    Inventors: Hemanshu Bhatt, Dilip Vijay, Jayanthi Pallinti, Sey-Shing Sun, Hong Ying, Chi-Yi Kao
  • Patent number: 8552560
    Abstract: Passivation integration schemes and pad structures to reduce the stress gradients and/or improve the contact surface existing between the Al in the pad and the gold wire bond. One of the pad structures provides a plurality of recessed pad areas which are formed in a single aluminum pad. An oxide mesa can be provided under the aluminum pad. Another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a copper pad and a plurality of trench/via pads. Still another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a portion of a copper pad, such that the aluminum pad and the copper pad are staggered relative to each other.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 8, 2013
    Assignee: LSI Corporation
    Inventors: Hemanshu Bhatt, Dilip Vijay, Jayanthi Pallinti, Sey-Shing Sun, Hong Ying, Chiyi Kao
  • Patent number: 8384165
    Abstract: A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 26, 2013
    Assignee: LSI Corporation
    Inventors: Richard J. Carter, Wai Lo, Sey-Shing Sun, Hong Lin, Verne Hornback
  • Patent number: 8076779
    Abstract: A pad structure and passivation scheme which reduces or eliminates IMC cracking in post wire bonded dies during Cu/Low-k BEOL processing. A thick 120 nm barrier layer can be provided between a 1.2 ?m aluminum layer and copper. Another possibility is to effectively split up the barrier layer, where the aluminum layer is disposed between the two barrier layers. The barrier layers may be 60 nm while the aluminum layer which is disposed between the barrier layers may be 0.6 ?m. Another possibility is provide an extra 0.6 ?m aluminum layer on the top barrier layer. Still another possibility is to provide an extra barrier layer on the top-most aluminum layer, such that a top barrier layer of 60 nm is provided on a 0.6 ?m aluminum layer, followed by another harrier layer of 60 nm, another aluminum layer of 0.6 ?m and another barrier layer of 60 nm.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: December 13, 2011
    Assignee: LSI Corporation
    Inventors: Sey-Shing Sun, Jayanthi Pallinti, Dilip Vijay, Hemanshu Bhatt, Hong Ying, Chiyi Kao, Peter Burke
  • Patent number: 7956401
    Abstract: The present invention is directed to methods of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a high-K dielectric material assisted with an ion beam to enable the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric films have a high degree of crystallographic alignment at grain boundaries. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The result is a dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 7, 2011
    Assignee: LSI Corporation
    Inventors: Wai Lo, Sey-Shing Sun, Wilbur Catabay
  • Patent number: 7915122
    Abstract: A method of forming a self-aligned logic cell. A nanotube layer is formed over the bottom electrode. A clamp layer is formed over the nanotube layer. The clamp layer covers the nanotube layer, thereby protecting the nanotube layer. A dielectric layer is formed over the clamp layer. The dielectric layer is etched. The clamp layer provides an etch stop and protects the nanotube layer. The clamp layer is etched with an isotropic etchant that etches the clamp layer underneath the dielectric layer, creating an overlap of the dielectric layer, and causing a self-alignment between the clamp layer and the dielectric layer. A spacer layer is formed over the nanotube layer. The spacer layer is etched except for a ring portion around the edge of the dielectric layer.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 29, 2011
    Assignee: Nantero, Inc.
    Inventors: Richard J. Carter, Hemanshu D. Bhatt, Shiqun Gu, Peter A. Burke, James R. B. Elmer, Sey-Shing Sun, Byung-Sung Kwak, Verne Hornback
  • Publication number: 20100022060
    Abstract: The present invention is directed to methods of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a high-K dielectric material assisted with an ion beam to enable the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric films have a high degree of crystallographic alignment at grain boundaries. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The result is a dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.
    Type: Application
    Filed: October 6, 2009
    Publication date: January 28, 2010
    Applicant: LSI CORPORATION
    Inventors: Wai LO, Sey-Shing SUN, Wilbur CATABAY
  • Patent number: 7619272
    Abstract: The present invention is directed to a method of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a material used in forming the high-K dielectric film and also using an ion beam to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: November 17, 2009
    Assignee: LSI Corporation
    Inventors: Wai Lo, Sey-Shing Sun, Wilbur Catabay
  • Patent number: 7582566
    Abstract: A method for redirecting void diffusion away from vias in an integrated circuit design includes steps of forming an electrical conductor in a first electrically conductive layer of an integrated circuit design, forming a via between a distal end of the electrical conductor and a second electrically conductive layer of the integrated circuit design, and reducing tensile stress in the electrical conductor to divert void diffusion away from the via.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: September 1, 2009
    Assignee: LSI Logic Corporation
    Inventors: Derryl D. J. Allman, Hemanshu D. Bhatt, Charles E. May, Peter Austin Burke, Byung-Sung Kwak, Sey-Shing Sun, David T. Price, David Pritchard
  • Patent number: 7531442
    Abstract: Different ways to reduce or eliminate the IMC cracking issues in wire bonded parts, including: changing to more compressive dielectric films for top, R1, and R2; changing the top passivation film stacks to more compressive films; changing the low k film to a higher compressive film; reducing the R layer thickness and pattern density to reduce tensile stress; and minimizing anneal and dielectric deposition temperatures. Each of the methods can be used individually or in combination with each other to reduce overall tensile stresses in the Cu/low-k wafer thus reducing or eliminating the IMC cracking issue currently seen in the post wire bonded parts.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: May 12, 2009
    Assignee: LSI Corporation
    Inventors: Jayanthi Pallinti, Dilip Vijay, Hemanshu Bhatt, Sey-Shing Sun, Hong Ying, Chiyi Kao, Peter Burke, Ramaswamy Ranganathan, Qwai Low
  • Publication number: 20080308882
    Abstract: A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 18, 2008
    Applicant: LSI CORPORATION
    Inventors: Richard J. Carter, Wai Lo, Sey-Shing Sun, Hong Lin, Verne Hornback
  • Patent number: 7436040
    Abstract: A method of diverting void diffusion in an integrated circuit includes steps of forming an electrical conductor having a boundary in a first electrically conductive layer of an integrated circuit, forming a via inside the boundary of the electrical conductor in a dielectric layer between the first electrically conductive layer and a second electrically conductive layer of the integrated circuit, and forming a slot between the via and the boundary of the electrical conductor for diverting void diffusion in the electrical conductor away from the via.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: October 14, 2008
    Assignee: LSI Corporation
    Inventors: Derryl D. J. Allman, Hemanshu D. Bhatt, Charles E. May, Peter Austin Burke, Byung-Sung Kwak, Sey-Shing Sun, David T. Price, David Pritchard
  • Patent number: 7405116
    Abstract: A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: July 29, 2008
    Assignee: LSI Corporation
    Inventors: Richard J. Carter, Wai Lo, Sey-Shing Sun, Hong Lin, Verne Hornback
  • Patent number: 7402770
    Abstract: A microelectronic switch having a substrate layer, an electrically conductive switching layer formed on the substrate layer, an electrically conductive cavity layer formed on the switching layer, an electrically conductive cap layer formed on the cavity layer, the cap layer forming a first electrode and a second electrode that are physically and electrically separated one from another, and which both at least partially overlie the switching layer, and a cavity disposed between the switching layer and the second electrode, where the switching is layer is flexible to make electrical contact with the second electrode by flexing through the cavity upon selective application of an electrical bias.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: July 22, 2008
    Assignee: LSI Logic Corporation
    Inventors: Sey-Shing Sun, Hemanshu D. Bhatt, Peter A. Burke, Richard J. Carter
  • Publication number: 20080150090
    Abstract: A method of forming a metal gate in a wafer. PolySi1-xGex and polysilicon are used to form a tapered groove. Gate oxide, PolySi1-xGex, and polysilicon is deposited on a wafer. A resist pattern is formed. A portion of the polysilicon, PolySi1-xGex, and gate oxide is removed to provide a tapered profile. The resist is removed; a dielectric liner is deposited, and then at least a portion of the dielectric liner is removed, thereby exposing the polysilicon and leaving the dielectric liner in contact with the polysilicon, PolySi1-xGex, and gate oxide. A dielectric is deposited, and a portion is removed thereby exposing the polysilicon. The polysilicon, PolySi1-xGex, and gate oxide is removed from inside the dielectric liner, thereby leaving a tapered gate groove. Metal is then deposited in the groove.
    Type: Application
    Filed: January 29, 2008
    Publication date: June 26, 2008
    Applicant: LSI LOGIC CORPORATION
    Inventors: Hong Lin, Wai Lo, Sey-Shing Sun, Richard Carter
  • Publication number: 20080132065
    Abstract: A method for redirecting void diffusion away from vias in an integrated circuit design includes steps of forming an electrical conductor in a first electrically conductive layer of an integrated circuit design, forming a via between a distal end of the electrical conductor and a second electrically conductive layer of the integrated circuit design, and reducing tensile stress in the electrical conductor to divert void diffusion away from the via.
    Type: Application
    Filed: January 24, 2008
    Publication date: June 5, 2008
    Inventors: Derryl D. J. Allman, Hemanshu D. Bhatt, Charles E. May, Peter Austin Burke, Byung-Sung Kwak, Sey-Shing Sun, David T. Price, David Pritchard