Patents by Inventor Shahram Askarpour

Shahram Askarpour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170219346
    Abstract: A method and system for compensating for significant soft iron magnetic disturbances in a heading reference system, such as an aircraft heading reference system, such as an integrated standby unit; or a vehicle inertial system, provides a heading correction signal to the heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is iteratively repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventor: Shahram Askarpour
  • Patent number: 9709992
    Abstract: A preexisting FMS system may be upgraded to increase its functionality by optimizing the control of autopilot and auto-throttle functions and replacing other preexisting components with different components for enhancing the functionality of the FMS system. The preexisting IRU, CADC, DME receiver and DFGC in the upgraded FMS system are in communication with the legacy AFMC but, instead of employing the legacy EFIS, the EFIS is replaced by a data concentrator unit as well as the display control panel and integrated flat panel display, and a GPS receiver. The upgraded FMS system is capable of iteratively controlling the autopilot and auto-throttle during all phases of flight and of such increased functionality as increased navigation database storage capacity, RNP, VNAV, LPV and RNAV capability utilizing a GPS based navigation solution, and RTA capability, while still enabling the legacy AFMC to exploit its aircraft performance capabilities throughout the flight.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 18, 2017
    Assignee: Innovative Solutions & Support, Inc.
    Inventors: Geoffrey S. M. Hedrick, Shahram Askarpour
  • Patent number: 9677889
    Abstract: A method and system for compensating for soft iron magnetic disturbances in multiple heading reference systems, such as aircraft heading reference systems, integrated standby units; or vehicle inertial systems, detects and provides a heading correction signal to the error prone heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is periodically repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 13, 2017
    Inventors: Shahram Askarpour, Geoffrey S. M. Hedrick
  • Patent number: 9658064
    Abstract: A method and system for compensating for significant soft iron magnetic disturbances in a heading reference system, such as an aircraft heading reference system, such as an integrated standby unit; or a vehicle inertial system, provides a heading correction signal to the heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is iteratively repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Innovative Solutions & Support, Inc.
    Inventor: Shahram Askarpour
  • Publication number: 20170106994
    Abstract: A composite normalized angle of attack indicating system provides a simultaneous display of both body angle of attack, such as in digital form, and normalized angle of attack for an aircraft. The display may be visually enhanced as stall is approached such as by zooming the body angle of attack digital display and/or by changing the color of the display. The normalized display also selectively displays an approach reference band when the flap setting is equal to or greater than 20 degrees.
    Type: Application
    Filed: December 30, 2016
    Publication date: April 20, 2017
    Inventors: Geoffrey S.M. Hedrick, Shahram Askarpour
  • Patent number: 9593593
    Abstract: A composite normalized angle of attack indicating system provides a simultaneous display of both body angle of attack, such as in digital form, and normalized angle of attack for an aircraft. The display may be visually enhanced as stall is approached such as by zooming the body angle of attack digital display and/or by changing the color of the display. The normalized display also selectively displays an approach reference band when the flap setting is equal to or greater than 20 degrees.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 14, 2017
    Assignee: Innovative Solutions & Support, Inc.
    Inventors: Geoffrey S. M. Hedrick, Shahram Askarpour
  • Patent number: 9595199
    Abstract: A preexisting FMS system may be upgraded to increase its functionality while still taking advantage of certain components of the legacy system previously provided on the aircraft and replacing other preexisting components with different components for enhancing the functionality of the FMS system. The preexisting IRU, CADC, DME receiver and DFGC in the upgraded FMS system are in communication with the legacy AFMC but, instead of employing the legacy EFIS which existed in the preexisting FMS system, the EFIS is replaced by a data concentrator unit as well as the display control panel and integrated flat panel display, and a GPS receiver. The upgraded FMS system is capable of such increased functionality as increased navigation database storage capacity, RNP, VNAV and RNAV capability utilizing a GPS based navigation solution, and RTA capability, while still enabling the legacy AFMC to exploit its aircraft performance capabilities throughout the flight.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 14, 2017
    Assignee: Innovative Solutions & Support, Inc.
    Inventors: Geoffrey S. M. Hedrick, Shahram Askarpour, Markus Knopf
  • Publication number: 20170068253
    Abstract: A preexisting FMS system may be upgraded to increase its functionality by optimizing the control of autopilot and auto-throttle functions and replacing other preexisting components with different components for enhancing the functionality of the FMS system. The preexisting IRU, CADC, DME receiver and DFGC in the upgraded FMS system are in communication with the legacy AFMC but, instead of employing the legacy EFIS, the EFIS is replaced by a data concentrator unit as well as the display control panel and integrated flat panel display, and a GPS receiver. The upgraded FMS system is capable of iteratively controlling the autopilot and auto-throttle during all phases of flight and of such increased functionality as increased navigation database storage capacity, RNP, VNAV, LPV and RNAV capability utilizing a GPS based navigation solution, and RTA capability, while still enabling the legacy AFMC to exploit its aircraft performance capabilities throughout the flight.
    Type: Application
    Filed: June 8, 2016
    Publication date: March 9, 2017
    Inventors: Geoffrey S.M. Hedrick, Shahram Askarpour
  • Publication number: 20170038207
    Abstract: Systems and methods of calibrating and adjusting for deviations in a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involve calibrating magnetometers for hard iron and misalignment errors using single heading measurements. This can be accomplished by obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Application
    Filed: September 28, 2016
    Publication date: February 9, 2017
    Inventor: Shahram Askarpour
  • Publication number: 20160334219
    Abstract: A method and system for compensating for soft iron magnetic disturbances in multiple heading reference systems, such as aircraft heading reference systems, integrated standby units; or vehicle inertial systems, detects and provides a heading correction signal to the error prone heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is periodically repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 17, 2016
    Inventors: Shahram Askarpour, Geoffrey S. M. Hedrick
  • Patent number: 9476734
    Abstract: Systems and methods of calibrating and adjusting for deviations in a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involve calibrating magnetometers for hard iron and misalignment errors using single heading measurements. This can be accomplished by obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: October 25, 2016
    Assignee: Innovative Solutions and Support, Inc.
    Inventor: Shahram Askarpour
  • Patent number: 9470550
    Abstract: A method of calibrating a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involves obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system which are then averaged to obtain a universal average gain and offset for the magnetometer. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 18, 2016
    Assignee: Innovative Solutions & Support, Inc.
    Inventor: Shahram Askarpour
  • Publication number: 20160187155
    Abstract: Systems and methods of calibrating and adjusting for deviations in a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involve calibrating magnetometers for hard iron and misalignment errors using single heading measurements. This can be accomplished by obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 30, 2016
    Inventor: Shahram Askarpour
  • Publication number: 20160123181
    Abstract: A composite normalized angle of attack indicating system provides a simultaneous display of both body angle of attack, such as in digital form, and normalized angle of attack for an aircraft. The display may be visually enhanced as stall is approached such as by zooming the body angle of attack digital display and/or by changing the color of the display. The normalized display also selectively displays an approach reference band when the flap setting is equal to or greater than 20 degrees.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 5, 2016
    Inventors: Geoffrey S.M. Hedrick, Shahram Askarpour
  • Publication number: 20160054126
    Abstract: A method and system for compensating for significant soft iron magnetic disturbances in a heading reference system, such as an aircraft heading reference system, such as an integrated standby unit; or a vehicle inertial system, provides a heading correction signal to the heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is iteratively repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 25, 2016
    Inventor: Shahram Askarpour
  • Publication number: 20160033302
    Abstract: A method of calibrating a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involves obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system which are then averaged to obtain a universal average gain and offset for the magnetometer. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 4, 2016
    Inventor: Shahram Askarpour
  • Patent number: 9221550
    Abstract: A composite normalized angle of attack indicating system provides a simultaneous display of both body angle of attack, such as in digital form, and normalized angle of attack for an aircraft. The display may be visually enhanced as stall is approached such as by zooming the body angle of attack digital display and/or by changing the color of the display. The normalized display also selectively displays an approach reference band when the flap setting is equal to or greater than 20 degrees.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 29, 2015
    Inventors: Geoffrey S. M. Hedrick, Shahram Askarpour
  • Patent number: 9207079
    Abstract: A method and system for compensating for significant soft iron magnetic disturbances in a heading reference system, such as an aircraft heading reference system, such as an integrated standby unit; or a vehicle inertial system, provides a heading correction signal to the heading reference system when a detected difference in value between a gyro heading relative to magnetic north and a magnetometer reading during a defined measurement period exceeds a predetermined acceptable threshold value of change, such as one based on the expected gyro drift over that period. Upon receipt of the heading correction signal, the gyro heading is adjusted to maintain an accurate heading relative to true magnetic north. If this threshold value is not exceeded, then the magnetometer reading is used for the heading value. This method is iteratively repeated in order to continually maintain an accurate heading and may be employed for each heading measurement axis.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 8, 2015
    Assignee: Innovative Solutions & Support, Inc.
    Inventor: Shahram Askarpour
  • Publication number: 20150339929
    Abstract: A preexisting FMS system may be upgraded to increase its functionality while still taking advantage of certain components of the legacy system previously provided on the aircraft and replacing other preexisting components with different components for enhancing the functionality of the FMS system. The preexisting IRU, CADC, DME receiver and DFGC in the upgraded FMS system are in communication with the legacy AFMC but, instead of employing the legacy EFIS which existed in the preexisting FMS system, the EFIS is replaced by a data concentrator unit as well as the display control panel and integrated flat panel display, and a GPS receiver. The upgraded FMS system is capable of such increased functionality as increased navigation database storage capacity, RNP, VNAV and RNAV capability utilizing a GPS based navigation solution, and RTA capability, while still enabling the legacy AFMC to exploit its aircraft performance capabilities throughout the flight.
    Type: Application
    Filed: June 10, 2015
    Publication date: November 26, 2015
    Inventors: Geoffrey S.M. Hedrick, Shahram Askarpour, Markus Knopf
  • Patent number: 9157747
    Abstract: A method of calibrating a vehicle's heading system, such as the attitude heading and reference system of an aircraft or the heading system of a ship, positioned along the Earth's surface involves obtaining both actual and theoretical readings for the magnetometer of the heading system, and comparing these values to obtain calibration values for the heading system which are then averaged to obtain a universal average gain and offset for the magnetometer. The vehicle may be repositioned, such as to North, South, East, and west magnetic headings, with the procedure repeated at each of these headings, and the calibration values averaged, further increasing the accuracy.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 13, 2015
    Assignee: Innovative Solutions and Support, Inc.
    Inventor: Shahram Askarpour