Patents by Inventor Sheng-Chau Chen

Sheng-Chau Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605534
    Abstract: In some embodiments, the present disclosure relates to method for trimming and cleaning an edge of a wafer. The method includes trimming an outer edge portion of the wafer with a blade along a continuously connected trim path to define a new sidewall of the wafer. The trimming produces contaminant particles on the wafer. Further, the method includes applying deionized water to the new sidewall of the wafer with water nozzles to remove the contaminant particles. The method also includes applying pressurized gas to the wafer at a first top surface area of the wafer with an air jet nozzle. The pressurized gas is directed outward from a center of the wafer to remove remaining contaminant particles. The applying of deionized water and the applying of pressurized gas are performed in a same chamber as the trimming.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-He Chou, Sheng-Chau Chen, Ming-Tung Wu, Hsun-Chung Kuang
  • Publication number: 20230069432
    Abstract: The present disclosure relates to a method and an associated process tool. The method includes generating electromagnetic radiation that is directed toward a perimeter of a pair of bonded workpieces and toward a radiation sensor that is arranged behind the perimeter of the pair of bonded workpieces. The electromagnetic radiation is scanned along a vertical axis. An intensity of the electromagnetic radiation that impinges on the radiation sensor is measured throughout the scanning. Measuring the intensity includes recording a plurality of intensity values of the electromagnetic radiation at a plurality of different positions along the vertical axis extending past top and bottom surfaces of the pair of bonded workpieces. A position of an interface between the pair of bonded workpieces is determined based on a maximum measured intensity value of the plurality of intensity values.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Hau-Yi Hsiao, Kuo-Ming Wu, Chun Liang Chen, Sheng-Chau Chen
  • Publication number: 20230069081
    Abstract: A thin-film deposition system includes a top plate positioned above a wafer and configured to generate a plasma during a thin-film deposition process. The system includes a gap sensor configured to generate sensor signals indicative of a gap between the wafer and the top plate. The system includes a control system configured to adjust the gap during the thin-film deposition process responsive to the sensor signals.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Sheng-Chan LI, Sheng-Chau CHEN, Cheng-Hsien CHOU, Cheng-Yuan TSAI
  • Publication number: 20230067249
    Abstract: Provided are an integrated circuit (IC) and a method of forming the same. The IC includes a substrate; a conductive layer, disposed on the substrate; a barrier layer, disposed on the conductive layer; an etching stop layer, covering a sidewall of the barrier layer and extending on a first portion of a top surface of the barrier layer; and at least one capacitor structure, disposed on a second portion of the top surface of the barrier layer.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Che Lee, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Patent number: 11594679
    Abstract: The problem of forming top electrode vias that provide consistent results in devices that include resistance switching RAM cells of varying heights is solved using a dielectric composite that fills areas between resistance switching RAM cells and varies in height to align with the tops of both the taller and the shorter resistance switching RAM cells. An etch stop layer may be formed over the dielectric composite providing an equal thickness of etch-resistant dielectric over both taller and shorter resistance switching RAM cells. The dielectric composite causes the etch stop layer to extend laterally away from the resistance switching RAM cells to maintain separation between the via openings and the resistance switching RAM cell sides even when the openings are misaligned.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Tai Hsiao, Sheng-Chau Chen, Hsun-Chung Kuang
  • Patent number: 11587908
    Abstract: A structure and a method of forming are provided. The structure includes a first dielectric layer overlying a first substrate. A first connection pad is disposed in a top surface of the first dielectric layer and contacts a first redistribution line. A first dummy pad is disposed in the top surface of the first dielectric layer, the first dummy pad contacting the first redistribution line. A second dielectric layer overlies a second substrate. A second connection pad and a second dummy pad are disposed in the top surface of the second dielectric layer, the second connection pad bonded to the first connection pad, and the first dummy pad positioned in a manner that is offset from the second dummy pad so that the first dummy pad and the second dummy pad do not contact each other.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: February 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Zhi-Yang Wang, Sheng-Chau Chen, Cheng-Hsien Chou
  • Patent number: 11581254
    Abstract: Metal-insulator-metal (MIM) capacitor, an integrated semiconductor device having a MIM capacitor and methods of making. The MIM capacitor includes a first metal layer, a second metal layer and a dielectric layer located between the second metal layer and the first metal layer. The first metal layer, the second metal layer and the dielectric layer may be formed in a comb structure, wherein the comb structure include a first tine structure and at least a second tine structure.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Paul Yang, Tsun-Kai Tsao, Sheng-Chau Chen, Sheng-Chan Li, Cheng-Yuan Tsai
  • Patent number: 11552066
    Abstract: A bonded assembly of a first wafer including a first semiconductor substrate and a second wafer including a second semiconductor substrate may be formed. The second semiconductor substrate may be thinned to a first thickness, and an inter-wafer moat trench may be formed at a periphery of the bonded assembly. A protective material layer may be formed in the inter-wafer moat trench and over the backside surface of the second semiconductor substrate. A peripheral portion of the second semiconductor substrate located outside the inter-wafer moat trench may be removed, and a cylindrical portion of the protective material layer laterally surrounds a remaining portion of the bonded assembly. The second semiconductor substrate may be thinned to a second thickness by performing at least one thinning process while the cylindrical portion of the protective material layer protects the remaining portion of the bonded assembly.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuo-Ming Wu, Ming-Che Lee, Hau-Yi Hsiao, Cheng-Hsien Chou, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20220362903
    Abstract: Various embodiments of the present disclosure are directed towards a chemical mechanical polishing (CMP) system including a first CMP head and a second CMP head. The first CMP head is configured to retain a workpiece and comprises a first plurality of pressure elements disposed across a first pressure control plate. The second CMP head is configured to retain the workpiece. The second CMP head comprises a second plurality of pressure elements disposed across a second pressure control plate. A distribution of the first plurality of pressure elements across the first pressure control plate is different from a distribution of the second plurality of pressure elements across the second pressure control plate.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Yung-Lung Lin, Kuo-Ming Wu, Cheng-Hsien Chou, I-Nan Chen, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20220362887
    Abstract: In some embodiments, the present disclosure relates to a wafer edge trimming apparatus that includes a processing chamber defined by chamber housing. Within the processing chamber is a wafer chuck configured to hold onto a wafer structure. Further, a blade is arranged near an edge of the wafer chuck and configured to remove an edge potion of the wafer structure and to define a new sidewall of the wafer structure. A laser sensor apparatus is configured to direct a laser beam directed toward a top surface of the wafer chuck. The laser sensor apparatus is configured to measure a parameter of an analysis area of the wafer structure. Control circuitry is to the laser sensor apparatus and the blade. The control circuitry is configured to start a damage prevention process when the parameter deviates from a predetermined threshold value by at least a predetermined shift value.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Hau-Yi Hsiao, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20220320180
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
  • Publication number: 20220310678
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor having a semiconductor substrate comprising a front-side surface opposite a back-side surface. A plurality of photodetectors is disposed in the semiconductor substrate. An isolation structure extends into the back-side surface of the semiconductor substrate and is disposed between adjacent photodetectors. The isolation structure includes a metal core, a conductive liner disposed between the semiconductor substrate and the metal core, and a first dielectric liner disposed between the conductive liner and the semiconductor substrate. The metal core comprises a first metal material and the conductive liner comprises the first metal material and a second metal material different from the first metal material.
    Type: Application
    Filed: June 21, 2021
    Publication date: September 29, 2022
    Inventors: Sheng-Chan Li, Hau-Yi Hsiao, Che Wei Yang, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20220293647
    Abstract: Various embodiments of the present disclosure are directed towards a pixel sensor. The pixel sensor includes a substrate having a front-side opposite a back-side. An image sensor element comprises an active layer disposed within the substrate, where the active layer comprises germanium. An anti-reflective coating (ARC) structure overlies the back-side of the substrate. The ARC structure includes a first dielectric layer overlying the back-side of the substrate, a second dielectric layer overlying the first dielectric layer, and a third dielectric layer overlying the second dielectric layer. A first index of refraction of the first dielectric layer is less than a second index of refraction of the second dielectric layer, and a third index of refraction of the third dielectric layer is less than the first index of refraction.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Ming-Che Lee
  • Publication number: 20220293556
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method comprises forming a plurality of semiconductor devices over a central region of a semiconductor wafer. The semiconductor wafer comprises a peripheral region laterally surrounding the central region and a circumferential edge disposed within the peripheral region. The semiconductor wafer comprises a notch disposed along the circumferential edge. Forming a stack of inter-level dielectric (ILD) layers over the semiconductor devices and laterally within the central region. Forming a bonding support structure over the peripheral region such that the bonding support structure comprises a bonding structure notch disposed along a circumferential edge of the bonding support structure. Forming the bonding support structure includes disposing the semiconductor wafer over a lower plasma exclusion zone (PEZ) ring that comprises a PEZ ring notch disposed along a circumferential edge of the lower PEZ ring.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Sheng-Chan Li, Cheng-Hsien Chou, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20220293457
    Abstract: In some embodiments, the present disclosure relates to an image sensor. The image sensor comprises a substrate. A photodetector is in the substrate and includes a semiconductor guard ring extending into a first side of the substrate. A shallow trench isolation (STI) structure extends into the first side of the substrate. An outer isolation structure extends into a second side of the substrate, opposite the first side of the substrate, to the STI structure. The STI structure and the outer isolation structure laterally surround the photodetector. An inner isolation structure extends into the second side of the substrate and overlies the photodetector. The inner isolation structure is vertically separated from the photodetector by the substrate. Further, the outer isolation structure laterally surrounds the inner isolation structure.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Tzu-Jui Wang, Sheng-Chan Li
  • Publication number: 20220285480
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a dielectric stack disposed over a substrate. The dielectric stack has a first plurality of layers interleaved between a second plurality of layers. The dielectric stack has one or more surfaces that define a plurality of indentations recessed into a side of the dielectric stack at different vertical heights corresponding to the second plurality of layers. A capacitor structure lines the one or more surfaces of the dielectric stack. The capacitor structure includes conductive electrodes separated by a capacitor dielectric.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 8, 2022
    Inventors: Alexander Kalnitsky, Ru-Liang Lee, Ming Chyi Liu, Sheng-Chan Li, Sheng-Chau Chen
  • Publication number: 20220278144
    Abstract: A semiconductor device according to the present disclosure includes a semiconductor layer, a plurality of metal isolation features disposed in the semiconductor layer, a metal grid disposed directly over the plurality of metal isolation features, and a plurality of microlens features disposed over the metal grid.
    Type: Application
    Filed: July 7, 2021
    Publication date: September 1, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220271023
    Abstract: A bonded assembly of a first wafer including a first semiconductor substrate and a second wafer including a second semiconductor substrate may be formed. The second semiconductor substrate may be thinned to a first thickness, and an inter-wafer moat trench may be formed at a periphery of the bonded assembly. A protective material layer may be formed in the inter-wafer moat trench and over the backside surface of the second semiconductor substrate. A peripheral portion of the second semiconductor substrate located outside the inter-wafer moat trench may be removed, and a cylindrical portion of the protective material layer laterally surrounds a remaining portion of the bonded assembly. The second semiconductor substrate may be thinned to a second thickness by performing at least one thinning process while the cylindrical portion of the protective material layer protects the remaining portion of the bonded assembly.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Inventors: Kuo-Ming WU, Ming-Che LEE, Hau-Yi HSIAO, Cheng-Hsien CHOU, Sheng-Chau CHEN, Cheng-Yuan TSAI
  • Publication number: 20220270918
    Abstract: A method of making a semiconductor arrangement includes forming a first layer of molecular ions in a first wafer interface region of a first wafer, forming a second layer of molecular ions in a second wafer interface region of a second wafer, forming a first molecular bond connecting the first wafer interface region to the second wafer interface region by applying pressure to at least one of the first wafer or the second wafer in a direction toward the first wafer interface region and the second wafer interface region, and annealing the first wafer and the second wafer to form a second molecular bond connecting the first wafer interface region to the second wafer interface region.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Inventors: Ming-Che LEE, Sheng-Chau CHEN, Cheng-Hsien CHOU, Cheng-Yuan TSAI
  • Publication number: 20220238568
    Abstract: Some embodiments relate to an image sensor. The image sensor includes a semiconductor substrate including a pixel region and a peripheral region. A backside isolation structure extends into a backside of the semiconductor substrate and laterally surrounds the pixel region. The backside isolation structure includes a metal core, and a dielectric liner separates the metal core from the semiconductor substrate. A conductive feature is disposed over a front side of the semiconductor substrate. A through substrate via extends from the backside of the semiconductor substrate through the peripheral region to contact the conductive feature. The through substrate via is laterally offset from the backside isolation structure. A conductive bridge is disposed beneath the backside of the semiconductor substrate and electrically couples the metal core of the backside isolation structure to the through substrate via.
    Type: Application
    Filed: June 2, 2021
    Publication date: July 28, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li