Patents by Inventor Sheng-Chen Wang

Sheng-Chen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220020770
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a memory array is formed by manufacturing portions of a word line during different and separate processes, thereby allowing the portions formed first to act as a structural support during later processes that would otherwise cause undesired damage to the structures.
    Type: Application
    Filed: September 11, 2020
    Publication date: January 20, 2022
    Inventors: Feng-Cheng Yang, Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Chung-Te Lin
  • Publication number: 20210408038
    Abstract: A memory array device includes a stack of transistors over a semiconductor substrate, a first transistor of the stack being disposed over a second transistor of the stack. The first transistor includes a first memory film along a first word line and a first channel region along a source line and a bit line, the first memory film being disposed between the first channel region and the first word line. The second transistor includes a second memory film along a second word line and a second channel region along the source line and the bit line, the second memory film being disposed between the second channel region and the second word line. The memory array device includes a first via electrically connected to the first word line and a second via electrically connected to the second word line, the second staircase via and the first staircase via having different widths.
    Type: Application
    Filed: April 15, 2021
    Publication date: December 30, 2021
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20210407569
    Abstract: 3D memory arrays including dummy conductive lines and methods of forming the same are disclosed. In an embodiment, a memory array includes a ferroelectric (FE) material over a semiconductor substrate, the FE material including vertical sidewalls in contact with a word line; an oxide semiconductor (OS) layer over the FE material, the OS layer contacting a source line and a bit line, the FE material being between the OS layer and the word line; a transistor including a portion of the FE material, a portion of the word line, a portion of the OS layer, a portion of the source line, and a portion of the bit line; and a first dummy word line between the transistor and the semiconductor substrate, the FE material further including first tapered sidewalls in contact with the first dummy word line.
    Type: Application
    Filed: October 6, 2020
    Publication date: December 30, 2021
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chao-I Wu, Sheng-Chen Wang, Yu-Ming Lin
  • Publication number: 20210407845
    Abstract: A memory device includes first transistor over a semiconductor substrate, wherein the first transistor includes a first word line extending over the semiconductor substrate; a second transistor over the semiconductor substrate, wherein the second transistor includes a second word line extending over the first word line; a first air gap extending between the first word line and the second word line; a memory film extending along and contacting the first word line and the second word line; a channel layer extending along the memory film; a source line extending along the channel layer, wherein the memory film is between the source line and the word line; a bit line extending along the channel layer, wherein the memory film is between the bit line and the word line; and an isolation region between the source line and the bit line.
    Type: Application
    Filed: January 27, 2021
    Publication date: December 30, 2021
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chia-Ta Yu, Han-Jong Chai
  • Publication number: 20210408049
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and memory devices is provided. The semiconductor substrate includes first transistors, and the first transistors are negative capacitance field effect transistors. The interconnect structure is disposed over the semiconductor substrate and electrically connected to the first transistors, and the interconnect structure includes stacked interlayer dielectric layers, interconnect wirings, and second transistors embedded in the stacked interlayer dielectric layers. The memory devices are embedded in the stacked interlayer dielectric layers and electrically connected to the second transistors.
    Type: Application
    Filed: February 18, 2021
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Chao-I Wu
  • Publication number: 20210408047
    Abstract: A memory device includes a first stacking structure, a second stacking structure, a plurality of first isolation structures, gate dielectric layers, channel layers and channel layers. The first stacking structure includes a plurality of first gate layers, and a second stacking structure includes a plurality of second gate layers, where the first stacking structure and the second stacking structure are located on a substrate and separated from each other through a trench. The first isolation structures are located in the trench, where a plurality of cell regions are respectively confined between two adjacent first isolation structures of the first isolation structures in the trench, where the first isolation structures each includes a first main layer and a first liner surrounding the first main layer, where the first liner separates the first main layer from the first stacking structure and the second stacking structure.
    Type: Application
    Filed: January 22, 2021
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20210408048
    Abstract: A memory device includes a substrate, a first stacking structure, a second stacking structure, struts, an isolation structure, memory films, channel layers, and conductive pillars. The first stacking structure includes first gate layers and is located on the substrate. The second stacking structure includes second gate layers and is located on the substrate, where the second stacking structure is separated from the first stacking structure through a trench. The struts stand on the substrate and are located in the trench, where the struts each have two opposite surfaces respectively in contact with the first stacking structure and the second stacking structure. The isolation structure stands on the substrate and is located in the trench, where cell regions are located in the trenches, and at least two of the cell regions are separated from one another through a respective one strut and the isolation structure connected therewith.
    Type: Application
    Filed: January 26, 2021
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20210408042
    Abstract: A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a first layer stack and a second layer stack successively over a substrate, where the first layer stack and the second layer stack have a same layered structure that includes a layer of a first electrically conductive material over a layer of a first dielectric material, where the first layer stack extends beyond lateral extents of the second layer stack; forming a trench that extends through the first layer stack and the second layer stack; lining sidewalls and a bottom of the trench with a ferroelectric material; conformally forming a channel material in the trench over the ferroelectric material; filling the trench with a second dielectric material; forming a first opening and a second opening in the second dielectric material; and filling the first opening and the second opening with a second electrically conductive material.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 30, 2021
    Inventors: Meng-Han Lin, Bo-Feng Young, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20210407980
    Abstract: Routing arrangements for 3D memory arrays and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a memory array including a gate dielectric layer contacting a first word line and a second word line; and an oxide semiconductor (OS) layer contacting a source line and a bit line, the gate dielectric layer being disposed between the OS layer and each of the first word line and the second word line; an interconnect structure over the memory array, a distance between the second word line and the interconnect structure being less than a distance between the first word line and the interconnect structure; and an integrated circuit die bonded to the interconnect structure opposite the memory array, the integrated circuit die is bonded to the being structure by dielectric-to-dielectric bonds and metal-to-metal bonds.
    Type: Application
    Filed: December 30, 2020
    Publication date: December 30, 2021
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Han-Jong Chia, Sheng-Chen Wang, Yu-Ming Lin
  • Publication number: 20210407848
    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming a layer stack over a substrate, the layer stack including alternating layers of a first dielectric material and a second dielectric material; forming trenches extending through the layer stack; replacing the second dielectric material with an electrically conductive material to form word lines (WLs); lining sidewalls and bottoms of the trenches with a ferroelectric material; filling the trenches with a third dielectric material; forming bit lines (BLs) and source lines (SLs) extending vertically through the third dielectric material; removing portions of the third dielectric material to form openings in the third dielectric material between the BLs and the SLs; forming a channel material along sidewalls of the openings; and filling the openings with a fourth dielectric material.
    Type: Application
    Filed: November 18, 2020
    Publication date: December 30, 2021
    Inventors: Han-Jong Chia, Meng-Han Lin, Sheng-Chen Wang, Feng-Cheng Yang, Chung-Te Lin
  • Publication number: 20210398994
    Abstract: A gated ferroelectric memory cell includes a dielectric material layer disposed over a substrate, a metallic bottom electrode, a ferroelectric dielectric layer contacting a top surface of the bottom electrode, a pillar semiconductor channel overlying the ferroelectric dielectric layer and capacitively coupled to the metallic bottom electrode through the ferroelectric dielectric layer, a gate dielectric layer including a horizontal gate dielectric portion overlying the ferroelectric dielectric layer and a tubular gate dielectric portion laterally surrounding the pillar semiconductor channel, a gate electrode strip overlying the horizontal gate dielectric portion and laterally surrounding the tubular gate dielectric portion and a metallic top electrode contacting a top surface of the pillar semiconductor channel.
    Type: Application
    Filed: November 13, 2020
    Publication date: December 23, 2021
    Inventors: Bo-Feng YOUNG, Sai-Hooi YEONG, Han-Jong CHIA, Sheng-Chen WANG, Yu-Ming LIN
  • Publication number: 20210398989
    Abstract: A memory device, a semiconductor device and a manufacturing method of the memory device are provided. The memory device includes first, second and third stacking structures, first and second channel structures, a gate dielectric layer, a switching layer, and first and second gate structures. The first, second and third stacking structures are laterally spaced apart from one another, and respectively comprise a conductive layer, an isolation layer and a channel layer. The third stacking structure is located between the first and second stacking structures. The first channel structure extends between the channel layers in the first and third stacking structures. The second channel structure extends between the channel layers in the second and third stacking structures. The gate dielectric layer and the first gate structure wrap around the first channel structure. The switching layer and the second gate structure wrap around the second channel structure.
    Type: Application
    Filed: January 27, 2021
    Publication date: December 23, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Han-Jong Chia
  • Patent number: 11205724
    Abstract: A method includes forming a metal gate in a first inter-layer dielectric, performing a treatment on the metal gate and the first inter-layer dielectric, selectively growing a hard mask on the metal gate without growing the hard mask from the first inter-layer dielectric, depositing a second inter-layer dielectric over the hard mask and the first inter-layer dielectric, planarizing the second inter-layer dielectric and the hard mask, and forming a gate contact plug penetrating through the hard mask to electrically couple to the metal gate.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: December 21, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Bo-Yu Lai, Sheng-Chen Wang, Sai-Hooi Yeong, Yen-Ming Chen, Chi On Chui
  • Publication number: 20210375919
    Abstract: A 3D memory array includes a row of stacks, each stack having alternating gate strips and dielectric strips. Dielectric plugs are disposed between the stacks and define cell areas. A data storage film and a channel film are disposed adjacent the stacks on the sides of the cell areas. The middles of the cell areas are filled with an intracell dielectric. Source lines and drain lines form vias through the intracell dielectric. The source lines and the drain lines are each provided with a bulge toward the interior of the cell area. The bulges increase the areas of the source line and the drain line without reducing the channel lengths. In some of these teachings, the areas of the source lines and the drain lines are increased by restricting the data storage film or the channel layer to the sides of the cell areas adjacent the stacks.
    Type: Application
    Filed: December 15, 2020
    Publication date: December 2, 2021
    Inventors: Sheng-Chen Wang, Feng-Cheng Yang, Meng-Han Lin, Han-Jong Chia
  • Publication number: 20210375927
    Abstract: In an embodiment, a device includes: a first dielectric layer over a substrate; a word line over the first dielectric layer, the word line including a first main layer and a first glue layer, the first glue layer extending along a bottom surface, a top surface, and a first sidewall of the first main layer; a second dielectric layer over the word line; a first bit line extending through the second dielectric layer and the first dielectric layer; and a data storage strip disposed between the first bit line and the word line, the data storage strip extending along a second sidewall of the word line.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 2, 2021
    Inventors: Han-Jong Chia, Chung-Te Lin, Feng-Cheng Yang, Meng-Han Lin, Sheng-Chen Wang
  • Publication number: 20210375932
    Abstract: A 3D memory array has data storage structures provided at least in part by one or more vertical films that do not extend between vertically adjacent memory cells. The 3D memory array includes conductive strips and dielectric strips, alternately stacked over a substrate. The conductive strips may be laterally indented from the dielectric strips to form recesses. A data storage film may be disposed within these recesses. Any portion of the data storage film deposited outside the recesses may have been effectively removed, whereby the data storage film is essentially discontinuous from tier to tier within the 3D memory array. The data storage film within each tier may have upper and lower boundaries that are the same as those of a corresponding conductive strip. The data storage film may also be made discontinuous between horizontally adjacent memory cells.
    Type: Application
    Filed: December 7, 2020
    Publication date: December 2, 2021
    Inventors: Sheng-Chen Wang, Feng-Cheng Yang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20210375990
    Abstract: The present disclosure, in some embodiments, relates to a memory device. In some embodiments, the memory device has a substrate and a lower interconnect metal line disposed over the substrate. The memory device also has a selector channel disposed over the lower interconnect metal line and a selector gate electrode wrapping around a sidewall of the selector channel and separating from the selector channel by a selector gate dielectric. The memory device also has a memory cell disposed over and electrically connected to the selector channel and an upper interconnect metal line disposed over the memory cell. By placing the selector within the back-end interconnect structure, front-end space is saved, and more integration flexibility is provided.
    Type: Application
    Filed: December 2, 2020
    Publication date: December 2, 2021
    Inventors: Bo-Feng Young, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Mauricio Manfrini, Han-Jong Chia
  • Publication number: 20210375938
    Abstract: A three-dimensional memory device and a manufacturing method thereof are provided. The three-dimensional memory device includes first and second stacking structures, isolation pillars, gate dielectric layers, channel layers and conductive pillars. The stacking structures are laterally spaced apart from each other. The stacking structures respectively comprises alternately stacked insulating layers and conductive layers. The isolation pillars laterally extend between the stacking structures. The isolation pillars further protrude into the stacking structures, and a space between the stacking structures is divided into cell regions. The gate dielectric layers are respectively formed in one of the cell regions, and cover opposing sidewalls of the stacking structures and sidewalls of the isolation pillars. The channel layers respectively cover an inner surface of one of the gate dielectric layers.
    Type: Application
    Filed: January 26, 2021
    Publication date: December 2, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Chun-Fu Cheng, Feng-Cheng Yang, Sheng-Chen Wang, Yu-Chien Chiu, Han-Jong Chia
  • Patent number: 11158508
    Abstract: A fin field device structure and method for forming the same are provided. The FinFET device structure includes a protruding structure extending from a substrate and an anti-punch through implant (APT) region formed in the protruding structure. The FinFET device structure includes a barrier layer formed on the APT region, and the barrier layer has a width in a horizontal direction. The width gradually tapers from a bottom of the barrier layer to a top of the barrier layer.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Yao Wen, Sheng-Chen Wang, Sai-Hooi Yeong, Hsueh-Chang Sung, Ya-Yun Cheng
  • Patent number: 11133229
    Abstract: A method includes forming a gate dielectric layer on a semiconductor fin, and forming a gate electrode over the gate dielectric layer. The gate electrode extends on sidewalls and a top surface of the semiconductor fin. A gate spacer is selectively deposited on a sidewall of the gate electrode. An exposed portion of the gate dielectric layer is free from a same material for forming the gate spacer deposited thereon. The method further includes etching the gate dielectric layer using the gate spacer as an etching mask to expose a portion of the semiconductor fin, and forming an epitaxy semiconductor region based on the semiconductor fin.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Bo-Yu Lai, Bo-Cyuan Lu, Chi On Chui, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen